Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria's mealtime dash is a swimming success

11.03.2008
Goldfish in an aquarium are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers at MIT recently proved that marine bacteria, the smallest creatures in the ocean, behave in a similar fashion at mealtime, using their swimming skills to reach tiny food patches that appear randomly in the ocean blue.

The behavior of bacteria at these small scales could have global implications, possibly even impacting the oceans’ health during climate change.

Scientists in the Department of Civil and Environmental Engineering demonstrated for the first time in lab experiments that the 2-micron-long, rod-shaped marine bacterium P. haloplanktis is able to locate and exploit nutrient patches extremely rapidly, thanks to its keen swimming abilities.

Food sources for these microorganisms come as dissolved nutrients and often appear as localized patches that, if not eaten, are rapidly dissipated by physical processes like diffusion. Foraging, then, becomes a race against time for a bacterium. A rapid response gives it a strong advantage over competitors and may allow it to take up nutrients before they undergo chemical changes. A paper scheduled to publish in the Proceedings of the National Academy of Sciences online Early Edition the week of March 10 describes the research.

“Our experiments have shown that marine bacteria are able to home in very rapidly on short-lived nutrient patches in the ocean,” said Roman Stocker, the Doherty Assistant Professor of Ocean Utilization and lead author on the paper. “This suggests that P. haloplanktis’ performance is finely tuned to the oceanic nutrient landscape. If you are a bacterium, the ocean looks like a desert to you, where food mostly comes in small patches that are rare and ephemeral. When you encounter one, you want to use it rapidly.”

Co-authors on the paper are postdoctoral associate Justin Seymour, graduate student Dana Hunt and Associate Professor Martin Polz all of MIT, and Assistant Professor Azadeh Samadani of Brandeis University.

The researchers were able to prove the behavior of P. haloplanktis by recreating a microcosm of the bacteria’s ocean environment using new technology called microfluidics. Microfluidics consists of patterns of minute channels engraved in a clear rubbery material and sealed with a glass slide. The researchers injected bacteria and nutrients into the microchannels at specific locations and, using video-microscopy, recorded the bacteria as they foraged on two simulated food sources: a lysing algal cell that creates a sudden explosion of dissolved nutrients, and the small nutrient plume trailing behind particles that sink in the ocean.

The question of whether the bacteria could or couldn’t put their swimming skills to use in this race against time has generated considerable interest in the scientific community over the past decade, because there’s a great deal riding on P. haloplanktis’ and their relatives’ ability to reach these nutrients and recycle them for other animals in the food web.

Scientists who study Earth’s carbon cycle know that accounting for all the organic matter in the marine food web is critical, including the matter that exists in these tiny, discrete nutrient patches bacteria feed on. In fact, the carbon in those patches is so important that some scientists believe marine bacteria’s capacity to utilize it will determine whether the oceans become a carbon sink or source during global warming.

Until 25 years ago, scientists weren’t really aware of the microbial loop, the processing of organic material among the smallest creatures in the ocean: bacteria, phytoplankton, nanozooplankton, viruses, etc. Now they know that the roughly 1 million bacteria per milliliter of ocean play a pivotal role in the microbial loop; by recycling that organic matter, they pass it on to larger animals and prevent it from dropping out of the marine food web.

But quantifying the importance of bacteria in the microbial loop has been difficult, because creating a realistic microenvironment wasn’t possible until recently.

“You can hope to study an organism’s behavior only in the context of its environment. The habitat of a bacterium, on the other hand, is extremely small, on the order of microns to millimeters,” said Stocker. “This has made the study of microbial behavior a formidable technical challenge to date. We have been able to create realistic environmental landscapes for studying marine bacteria in the lab by using microfluidic technology.”

P. haloplanktis is a rapid swimmer, propelling itself by a single rotating flagellum in bursts of speed up to 500 body lengths per second. (The fastest land animal, the cheetah, travels at bursts of speed up to 30 body lengths per second.) During experiments, Stocker and team observed that the bacteria used their rapid motility to very effectively swim toward and follow their food sources. That directed movement in response to a chemical gradient (in this case, nutrients) is known as chemotaxis.

“It will be important to see how widespread the use of rapid chemotaxis is in the ocean,” said Stocker. “We expect this to depend on the environment; in algal blooms, for example, nutrient patches and plumes will be abundant, and speedy bacteria will be favored. Whenever this is the case, nutrients get recycled much more rapidly, making the food web more productive and potentially affecting the rates at which carbon is cycled in the ocean.”

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>