Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria's mealtime dash is a swimming success

11.03.2008
Goldfish in an aquarium are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers at MIT recently proved that marine bacteria, the smallest creatures in the ocean, behave in a similar fashion at mealtime, using their swimming skills to reach tiny food patches that appear randomly in the ocean blue.

The behavior of bacteria at these small scales could have global implications, possibly even impacting the oceans’ health during climate change.

Scientists in the Department of Civil and Environmental Engineering demonstrated for the first time in lab experiments that the 2-micron-long, rod-shaped marine bacterium P. haloplanktis is able to locate and exploit nutrient patches extremely rapidly, thanks to its keen swimming abilities.

Food sources for these microorganisms come as dissolved nutrients and often appear as localized patches that, if not eaten, are rapidly dissipated by physical processes like diffusion. Foraging, then, becomes a race against time for a bacterium. A rapid response gives it a strong advantage over competitors and may allow it to take up nutrients before they undergo chemical changes. A paper scheduled to publish in the Proceedings of the National Academy of Sciences online Early Edition the week of March 10 describes the research.

“Our experiments have shown that marine bacteria are able to home in very rapidly on short-lived nutrient patches in the ocean,” said Roman Stocker, the Doherty Assistant Professor of Ocean Utilization and lead author on the paper. “This suggests that P. haloplanktis’ performance is finely tuned to the oceanic nutrient landscape. If you are a bacterium, the ocean looks like a desert to you, where food mostly comes in small patches that are rare and ephemeral. When you encounter one, you want to use it rapidly.”

Co-authors on the paper are postdoctoral associate Justin Seymour, graduate student Dana Hunt and Associate Professor Martin Polz all of MIT, and Assistant Professor Azadeh Samadani of Brandeis University.

The researchers were able to prove the behavior of P. haloplanktis by recreating a microcosm of the bacteria’s ocean environment using new technology called microfluidics. Microfluidics consists of patterns of minute channels engraved in a clear rubbery material and sealed with a glass slide. The researchers injected bacteria and nutrients into the microchannels at specific locations and, using video-microscopy, recorded the bacteria as they foraged on two simulated food sources: a lysing algal cell that creates a sudden explosion of dissolved nutrients, and the small nutrient plume trailing behind particles that sink in the ocean.

The question of whether the bacteria could or couldn’t put their swimming skills to use in this race against time has generated considerable interest in the scientific community over the past decade, because there’s a great deal riding on P. haloplanktis’ and their relatives’ ability to reach these nutrients and recycle them for other animals in the food web.

Scientists who study Earth’s carbon cycle know that accounting for all the organic matter in the marine food web is critical, including the matter that exists in these tiny, discrete nutrient patches bacteria feed on. In fact, the carbon in those patches is so important that some scientists believe marine bacteria’s capacity to utilize it will determine whether the oceans become a carbon sink or source during global warming.

Until 25 years ago, scientists weren’t really aware of the microbial loop, the processing of organic material among the smallest creatures in the ocean: bacteria, phytoplankton, nanozooplankton, viruses, etc. Now they know that the roughly 1 million bacteria per milliliter of ocean play a pivotal role in the microbial loop; by recycling that organic matter, they pass it on to larger animals and prevent it from dropping out of the marine food web.

But quantifying the importance of bacteria in the microbial loop has been difficult, because creating a realistic microenvironment wasn’t possible until recently.

“You can hope to study an organism’s behavior only in the context of its environment. The habitat of a bacterium, on the other hand, is extremely small, on the order of microns to millimeters,” said Stocker. “This has made the study of microbial behavior a formidable technical challenge to date. We have been able to create realistic environmental landscapes for studying marine bacteria in the lab by using microfluidic technology.”

P. haloplanktis is a rapid swimmer, propelling itself by a single rotating flagellum in bursts of speed up to 500 body lengths per second. (The fastest land animal, the cheetah, travels at bursts of speed up to 30 body lengths per second.) During experiments, Stocker and team observed that the bacteria used their rapid motility to very effectively swim toward and follow their food sources. That directed movement in response to a chemical gradient (in this case, nutrients) is known as chemotaxis.

“It will be important to see how widespread the use of rapid chemotaxis is in the ocean,” said Stocker. “We expect this to depend on the environment; in algal blooms, for example, nutrient patches and plumes will be abundant, and speedy bacteria will be favored. Whenever this is the case, nutrients get recycled much more rapidly, making the food web more productive and potentially affecting the rates at which carbon is cycled in the ocean.”

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>