Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of cooperation between trees and fungi revealed

06.03.2008
Trees and fungi have constructed a close relationsip with the passing of the ages. Fungi like to grow between the roots of trees and the arrangement is beneficial to both partners.

Their delicate balance is now being revealed for the very first time. VIB researchers at Ghent University in colaboration with an international team have succeeded in unravelling the genetic code of the Laccaria bicolor fungus. This new information is crucial to our knowledge. It will lead to a better understanding of how fungi help trees to grow and how together they can be indicators of climate change.

Trees and fungi live happily together
Trees are the lungs of the earth. They draw CO2 from the atmosphere and convert it into sugars, which then become a source of energy. In the process they breathe O2 back into the atmosphere. This “green” production of biomass – trees account for 90% of the planet’s land-based biomass – is a major influence on the health of our planet.

Trees grow better and faster when certain specialized micro-organisms occur in their root systems. One such organism is the Laccaria bicolor fungus. The symbiotic relationship of the fungus and the tree root systems is advantageous to both. The fungus facilitates the uptake of scarce nutrients such as phosphates and nitrogen and protects the roots against parasites in the soil. In return they are able to draw on the sugars in the roots. 85% of all plants and trees are dependent on symbiotic processes of this kind for their growth.

Genetic code of symbiotic fungus yields up first secrets
An international collaborative project was set up to characterize the genome of the soil fungus Laccaria bicolor . VIB scientists Pierre Rouzé and Yves Van de Peer, working with France’s renowned INRA and JGI of the US, have sequenced the DNA of the fungus. They have been able to identify 20,000 genes in the fungal genome. Their analyses immediately resulted in new knowledge, including the discovery of an arsenal of small proteins known as SSPs (small secreted proteins), which are only made at those places where the fungus and the tree root come into contact. The genome study also revealed that the fungus is unable to break down plant cells but does affect the cell walls of pathogens. This could explain how these fungi protect their symbiotic partners. Additionally the researchers identified genes which play a role in communicating with all the players in the surroundings of the roots of the host tree during growth.
Fungi: barometers of climate change?
A better understanding of the genetic secrets of this fungus does not just hold out the prospect of being able to optimize biomass production; research into the delicate balance between fungus and tree may also yield important information that could be used to monitor climate change. Not only has the genome of the Laccaria bicolor been fully sequenced, that of the poplar, one of the trees with which it forms a relationship, is also fully known. This will make it possible to find out exactly how tree and fungus cooperate and react to stress factors such as drought or extreme temperatures resulting from climate change. The hope exists that the assembled information will result in concrete applications in which trees and fungi can be deployed to the benefit of both people and the environment.

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>