Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of cooperation between trees and fungi revealed

06.03.2008
Trees and fungi have constructed a close relationsip with the passing of the ages. Fungi like to grow between the roots of trees and the arrangement is beneficial to both partners.

Their delicate balance is now being revealed for the very first time. VIB researchers at Ghent University in colaboration with an international team have succeeded in unravelling the genetic code of the Laccaria bicolor fungus. This new information is crucial to our knowledge. It will lead to a better understanding of how fungi help trees to grow and how together they can be indicators of climate change.

Trees and fungi live happily together
Trees are the lungs of the earth. They draw CO2 from the atmosphere and convert it into sugars, which then become a source of energy. In the process they breathe O2 back into the atmosphere. This “green” production of biomass – trees account for 90% of the planet’s land-based biomass – is a major influence on the health of our planet.

Trees grow better and faster when certain specialized micro-organisms occur in their root systems. One such organism is the Laccaria bicolor fungus. The symbiotic relationship of the fungus and the tree root systems is advantageous to both. The fungus facilitates the uptake of scarce nutrients such as phosphates and nitrogen and protects the roots against parasites in the soil. In return they are able to draw on the sugars in the roots. 85% of all plants and trees are dependent on symbiotic processes of this kind for their growth.

Genetic code of symbiotic fungus yields up first secrets
An international collaborative project was set up to characterize the genome of the soil fungus Laccaria bicolor . VIB scientists Pierre Rouzé and Yves Van de Peer, working with France’s renowned INRA and JGI of the US, have sequenced the DNA of the fungus. They have been able to identify 20,000 genes in the fungal genome. Their analyses immediately resulted in new knowledge, including the discovery of an arsenal of small proteins known as SSPs (small secreted proteins), which are only made at those places where the fungus and the tree root come into contact. The genome study also revealed that the fungus is unable to break down plant cells but does affect the cell walls of pathogens. This could explain how these fungi protect their symbiotic partners. Additionally the researchers identified genes which play a role in communicating with all the players in the surroundings of the roots of the host tree during growth.
Fungi: barometers of climate change?
A better understanding of the genetic secrets of this fungus does not just hold out the prospect of being able to optimize biomass production; research into the delicate balance between fungus and tree may also yield important information that could be used to monitor climate change. Not only has the genome of the Laccaria bicolor been fully sequenced, that of the poplar, one of the trees with which it forms a relationship, is also fully known. This will make it possible to find out exactly how tree and fungus cooperate and react to stress factors such as drought or extreme temperatures resulting from climate change. The hope exists that the assembled information will result in concrete applications in which trees and fungi can be deployed to the benefit of both people and the environment.

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>