Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of cooperation between trees and fungi revealed

06.03.2008
Trees and fungi have constructed a close relationsip with the passing of the ages. Fungi like to grow between the roots of trees and the arrangement is beneficial to both partners.

Their delicate balance is now being revealed for the very first time. VIB researchers at Ghent University in colaboration with an international team have succeeded in unravelling the genetic code of the Laccaria bicolor fungus. This new information is crucial to our knowledge. It will lead to a better understanding of how fungi help trees to grow and how together they can be indicators of climate change.

Trees and fungi live happily together
Trees are the lungs of the earth. They draw CO2 from the atmosphere and convert it into sugars, which then become a source of energy. In the process they breathe O2 back into the atmosphere. This “green” production of biomass – trees account for 90% of the planet’s land-based biomass – is a major influence on the health of our planet.

Trees grow better and faster when certain specialized micro-organisms occur in their root systems. One such organism is the Laccaria bicolor fungus. The symbiotic relationship of the fungus and the tree root systems is advantageous to both. The fungus facilitates the uptake of scarce nutrients such as phosphates and nitrogen and protects the roots against parasites in the soil. In return they are able to draw on the sugars in the roots. 85% of all plants and trees are dependent on symbiotic processes of this kind for their growth.

Genetic code of symbiotic fungus yields up first secrets
An international collaborative project was set up to characterize the genome of the soil fungus Laccaria bicolor . VIB scientists Pierre Rouzé and Yves Van de Peer, working with France’s renowned INRA and JGI of the US, have sequenced the DNA of the fungus. They have been able to identify 20,000 genes in the fungal genome. Their analyses immediately resulted in new knowledge, including the discovery of an arsenal of small proteins known as SSPs (small secreted proteins), which are only made at those places where the fungus and the tree root come into contact. The genome study also revealed that the fungus is unable to break down plant cells but does affect the cell walls of pathogens. This could explain how these fungi protect their symbiotic partners. Additionally the researchers identified genes which play a role in communicating with all the players in the surroundings of the roots of the host tree during growth.
Fungi: barometers of climate change?
A better understanding of the genetic secrets of this fungus does not just hold out the prospect of being able to optimize biomass production; research into the delicate balance between fungus and tree may also yield important information that could be used to monitor climate change. Not only has the genome of the Laccaria bicolor been fully sequenced, that of the poplar, one of the trees with which it forms a relationship, is also fully known. This will make it possible to find out exactly how tree and fungus cooperate and react to stress factors such as drought or extreme temperatures resulting from climate change. The hope exists that the assembled information will result in concrete applications in which trees and fungi can be deployed to the benefit of both people and the environment.

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>