Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernation-like behaviour in Antarctic fish – on ice for winter

05.03.2008
Scientists have discovered an Antarctic fish species that adopts a winter survival strategy similar to hibernation. Reporting this week in the journal PLoS ONE, the online journal from the Public Library of Science, scientists from British Antarctic Survey (BAS) and the University of Birmingham reveal, for the first time, that the Antarctic ‘cod’ Notothenia coriiceps effectively ‘puts itself on ice’ to survive the long Antarctic winter.

The study showed that the fish activate a seasonal ‘switch’ in ecological strategy – going from one that maximises feeding and growth in summer to another that minimises the energetic cost of living during the long, Antarctic winter.

The research demonstrates that at least some fish species can enter a dormant state, similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits. Scientists already know that Antarctic fish have very low metabolic rates and blood ‘antifreeze’ proteins that allow them to live in near-freezing waters. This study demonstrates that Antarctic fish - which already live in the ‘slow lane’ with extremely low rates of growth, metabolism and swimming activity - can in fact further depress these metabolic processes in winter.

Lead author Dr Hamish Campbell, formerly at the University of Birmingham, UK but now at University of Queensland, Australia said,

“Hibernation is a pretty complex subject. Fish are generally incapable of suppressing their metabolic rate independently of temperature. Therefore, winter dormancy in fish is typically directly proportional to decreasing water temperatures. The interesting thing about these Antarctic cod is that their metabolic rates are reduced in winter even though the seawater temperature doesn’t decrease much. It seems unlikely that the small winter reductions in water temperature that do occur are causing the measured decrease in metabolism. However, there are big seasonal changes in light levels, with 24 hour light during summer followed by months of winter darkness – so the decrease in light during winter may be driving the reduction in metabolic rates.”

Dr Keiron Fraser from BAS says,
“This is our first insight into how these fish live in winter. We have for the first time in the Antarctic, used cutting edge technologies combining tracking of free swimming fish in the wild and heart rate monitors to allow us to investigate just how these animals cope in winter with living in near freezing water and almost complete darkness for months on end. It appears they utilise the short Antarctic summers to gain sufficient energy from feeding to tide them over in winter. The hibernation-like state they enter in winter is presumably a mechanism for reducing their energy requirements to the bare minimum. The interesting question we still have to answer is why these fish greatly reduce feeding in winter when food is still available.”

Why these fish chose to adopt this hibernation-like strategy during winter is currently unclear, but it presumably provides energetic benefits. The traditional views of hibernation are being challenged constantly. This study introduces a new group of animals that appear to utilise a hibernation-like strategy that allows them to survive during the long winters in one of the harshest environments on Earth.

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk
http://www.plosone.org/doi/pone.0001743
http://www.antarctica.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>