Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polluted Prey Causes Wild Birds to Change Their Tune

27.02.2008
Considerable attention has been paid to the effects of endocrine disrupting chemicals in aquatic environments, but rather less attention has been given to routes of contamination on land.

A new study, published in PLoS ONE on February 27 by researchers at Cardiff University, reveals that wild birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour: male birds exposed to this pollution develop more complex songs, which are actually preferred by the females, even though these same males usually show reduced immune function compared to controls.

Katherine Buchanan and her colleagues studied male European starlings (Sturnus vulgaris) foraging at a sewage treatment works in the south-west UK and analysed the earthworms that constitute their prey. The researchers found that those birds exposed to environmentally-relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to males in a control group.

Specifically, birds dosed with the complete spectrum of endocrine disrupting chemicals found in the invertebrates spent longer singing, sang more often and produced more complex songs, a sexually selected trait important in attracting females for reproduction even though birds dosed at these ecologically relevant levels also showed reduced immune function.

The study also addresses the mechanism for this effect, as the researchers found that the high vocal centre (HVC), the area of the brain that controls male song complexity, is significantly enlarged in the contaminated birds. Estrogen causes masculinisation of the songbird brain and the HVC is enriched with estrogen receptors. Neural development is thus susceptible to exposure to chemicals which mimic estrogen, or to enhanced estrogen levels. The results also confirm the plasticity of the adult songbird brain.

Finally, the scientists found that female starlings prefer the song of males exposed to the mixture of endocrine disrupting chemicals, suggesting the potential for population level effects on reproductive success.

“This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song,” said Katherine Buchanan, the corresponding author of the paper. “These results may have consequences of population dynamics of an already declining species.”

Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001674

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>