Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold without poison

25.02.2008
Researchers from the Krasnoyarsk State University together with their colleagues from the Institute of Chemistry and Applied Chemistry, Siberian Branch, Russian Academy of Sciences, also located in Krasnoyarsk, have developed an original method for extracting gold and silver from multicomponent solutions.

The peculiarity of the suggested technology is that chemists have ultimately managed to find an adequate and fundamentally less toxic replacement to cyanide – the reagent which is widely applied for extracting gold from ore and recyclable materials and which is even called a “poisonous companion of gold”. It is the very poison the detective story authors like so much but river and lake inhabitants dislike so much.

They dislike it to such extent that they simply die – this happened, for example, to fish in the Danube, when in 2000 cyanide got into the Tisa river and then from it – into the Danube through a small Austrian gold-mining company’s fault. The company used cyanide to extract gold and silver from solutions. However, not only fish suffered – a lot of birds and wild animals died, millions of Hungary inhabitants were deprived of drinking water.

Basically, the method developed by the Krasnoyarsk chemists does not differ fundamentally from the known one. In both cases, the reagent is added to complicated solutions containing a noble metal– for example, after ore dissolution, or as the specialists put it, opening up of ore. The reagent forms a complex both with gold and silver. Thus a compound is obtained, in which the central atom of the metal is surrounded by several ions – either those of cyanide (as usual), or of thiocyanate (a new method).

The entire construction is an anion, and it can be further extracted from the solution on the so-called ion-exchanging column – chlorine ions can be “changed” (they go into the solution) for composite ions that contain the noble metal in the ion-exchange resin filling the column.

Then these ions, certainly together with silver and gold should be washed off the column, and the target metal should be educed from this solution – it can be reduced electrolytically or by any other method.

However, this seems simple only on paper. But in real life chemists had to perform tremendous work to select the most efficient sorbent and conditions of dealing with it to “catch” maximum noble metal from the solution and then to wash all of it off the column, it is desirable to do that separately. And they have succeeded in doing that.

The researchers not only investigated the sorbtion mechanism of thiocyanate complexes of gold and copper on very different sorbents, but they also discovered those that enable to extract practically all noble metal from the solution. Moreover, having designed the necessary methodology, the authors learned to fully separate gold and silver, varying the solution composition, which “washes off” the target metal from the sorbent. Besides, the researchers developed and patented the method that allows to determine the gold content directly in the sorbent, but not in a ready solution. Of course, this is very convenient – because this allows to learn exactly how fully the noble metal was extracted from the initial solution and then – how fully it was extracted from the sobent.

In brief, the researchers have developed an excellent method for extracting gold and silver – it is efficient and much less poisonous the traditional method. Cyanide is almost one hundred times more toxic than thiocyanate. So, the Krasnoyarsk chemists have managed to relieve gold at least one poisonous companion – cyanide.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>