Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue lab works to improve conditions at indoor swimming pools

21.02.2008
Researchers at Purdue University have determined how certain airborne contaminants are created when chlorine reacts with sweat and urine in indoor swimming pools, a step toward learning how to reduce the formation of "volatile disinfection byproducts" that cause respiratory irritation.

"Some indoor swimming pools seem to have a characteristic chlorine odor," said Purdue environmental engineering professor Ernest R. Blatchley III. "You may think you're smelling chlorine, but you are probably smelling a mixture of disinfection byproducts. If their concentrations get high enough, then they can become an irritant to your respiratory system, to your skin and to your eyes."

The problem received national attention last summer when the U.S. National Swimming Championships in Indianapolis were interrupted after swimmers experienced difficulty breathing.

Standard tests for swimming pool water detect inorganic byproducts, or chemical compounds that do not contain carbon-hydrogen bonds. The Purdue researchers are the first to identify the presence of organic "volatile disinfection byproducts," which become airborne and pose health concerns.

Findings from the Purdue research were published last year in the journal Environmental Science & Technology. Additional findings are expected to appear later this year in the same journal and will be presented during the World Aquatic Health Conference on Oct. 15-17 in Colorado Springs, Colo. Postdoctoral research associate Jing Li and Blatchley, both in Purdue's School of Civil Engineering, are leading the work.

The research is part of an effort to apply to the aquatics industry the same level of scientific rigor seen in the study of drinking-water chemistry, said Michael Beach, acting associate director for healthy water in the Centers for Disease Control and Prevention's National Center for Zoonotic, Vector-borne and Enteric Diseases.

"If you don't understand what's in the soup, you can't know how to treat the water," he said. "The Purdue research is finding all sorts of compounds that could have potential health effects."

The CDC has documented cases where people became ill after breathing contaminants at improperly maintained indoor swimming pools.

"We see this as a very large public health issue that we are just starting to uncover, and we need to have more data," Beach said.

Swimming is the most popular recreational activity for children in the United States, and anecdotal evidence suggests that children might be more sensitive than adults to the irritating effects of disinfection byproducts, Beach said.

Chlorination is used primarily to prevent pathogenic microorganisms from growing.

"What we are trying to do is investigate the chemistry of the reactions between chlorine and the stuff that people put in swimming pools: sweat and urine," Blatchley said. "We will also investigate what happens when chlorine reacts with other contaminants, including personal care products like makeup and deodorants."

The Purdue researchers analyzed swimming pool water for the presence of organic compounds generated when chlorine reacts with creatinine, urea and amino acids, which are contained in human urine and sweat. Measurements have allowed the researchers to hypothesize specifically how the urea, creatinine and several amino acids react with chlorine to produce the disinfection byproducts.

"We focused on a couple of the amino acids that we believe are representative of those that are present in sweat and urine and likely to be present at high concentrations in swimming pool water," Blatchley said.

The Purdue researchers used an analytical technique called membrane introduction mass spectrometry to identify and measure the volatile disinfection byproducts.

The conventional technique for analyzing swimming pool water uses a test that causes a color change depending on the chemical makeup of the samples. The test, however, fails to distinguish between various types of chemical compounds.

"Basically, what we want to do is relate our measurements to the operating characteristics of the pool," Blatchley said. "To address this issue, we are collecting samples from a number of public pools and analyzing them to determine the concentrations of volatile disinfection byproducts that are present in operating pools."

That research is being conducted by three members of Blatchley's group: graduate students William Weaver and Yuli Wen and undergraduate student Jessica Johnston.

"We are also examining what can be done to the water to improve the chemistry once these chemicals have been formed," Blatchley said. "In other words, how can you break down the disinfection byproducts or prevent their formation?"

New research is focusing on what happens when disinfection byproducts are treated with ultraviolet radiation. Findings indicate that some inorganic disinfection byproducts containing nitrogen that are subjected to ultraviolet radiation break down to "more or less innocuous compounds," Blatchley said.

The disinfection byproducts are converted to several compounds, including nitrates and nitrous oxide, also known as laughing gas.

"Currently, we know where about 75 percent of the nitrogen goes, and we think we know where most of the rest of it goes, but we need to do some experiments to confirm that," he said.

These findings also will shed light on what happens to drinking water when treated with ultraviolet radiation.

"Sometimes ultraviolet radiation and chlorine are used together to treat drinking water," Blatchley said. "The chemistry is very similar in both settings, so our interest in those reactions is broader than just swimming pools.

"We have a pretty good understanding of what UV radiation does to microorganisms, but what it does to these chemicals in water is not as well-understood. With that in mind, we are investigating the reaction mechanisms, as well as how fast reactions take place with exposure of these disinfection byproducts to UV radiation."

Their research is concentrating on learning how ultraviolet radiation reacts with organic disinfection byproducts that are formed as a result of chlorination of urea, creatinine, amino acids and other compounds.

In future work, the researchers are going to interview pool operators to learn more details, such as how many people use the facilities and how often the water is chlorinated.

"It's amazing how little we know about swimming pool chemistry," Blatchley said. "And that's why we have pools being shut down for reasons that are probably avoidable. We want to solve this problem so that businesses and municipalities can operate their swimming pools in a manner that doesn't cause people to get sick."

The research has been funded by the DuPont Experimental Station in Wilmington, Del., and the National Swimming Pool Foundation.

The foundation recently awarded a $135,954 grant to the Purdue researchers to learn more about using ultraviolet radiation with chlorination to disinfect recreational water. The research focuses on chemical and photochemical reactions that form and destroy disinfection byproducts.

"Once we know the chemistry, our industry can unleash solutions to improve air quality, reduce negative health risks and enhance the aquatic experience," said Thomas M. Lachocki, CEO of the National Swimming Pool Foundation. "We want to move toward reducing exposure to chemicals that are not natural."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Ernest R. Blatchley III, (765) 494-0316, blatch@ecn.purdue.edu
Thomas M Lachocki, (719) 540-9119, tom.lachocki@nspf.org
Michael Beach, (770) 488–7763, mbeach@cdc.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>