Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown expert connects resilience science and marine conservation

18.02.2008
Brown University marine conservation scientist Heather Leslie will explain how the fast-growing field of resilience science can produce more effective ocean protection policies at the annual meeting of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.

Resilience science is the study of how ecosystems resist and respond to disturbances, both natu-ral and man-made. This increasingly influential area of environmental science is affecting marine conservation efforts from the Gulf of Maine to the Great Barrier Reef.

At the meeting, held in Boston, Leslie will explain resilience science and its impact in a Feb. 17, 2008 symposium titled “Embracing Change: A New Vision for Management in Coastal Marine Ecosystems.” The symposium runs from 8:30 to 11:30 a.m. in Room 313 of the Hynes Conven-tion Center. Leslie will also attend a Feb. 14, 2008 press briefing on the topic of marine ecosys-tem threats. The briefing kicks off at 1 p.m. in Room 112 of the Hynes Convention Center.

The Sharpe Assistant Professor of Environmental Studies and Biology at Brown, Leslie will dis-cuss at the symposium how ocean ecosystems are increasingly threatened by overfishing, pollu-tion, habitat loss, climate change and coastal development. Understanding why some ecosystems resist these shocks, and continue to deliver benefits such as plentiful fish and pristine beaches, and how others collapse is the subject of resilience science – a budding branch of study that combines approaches from both the life and social sciences.

“Resilience science examines how human and natural forces come together to affect an ecosys-tem’s ability to resist, recover or adapt to disturbances,” Leslie said. “That knowledge can be di-rectly applied to conservation policies – policies that can better protect the oceans.”

At the AAAS symposium, Leslie will explain key elements of resilience science. These include the recognition of the connections between marine systems and human communities, the mainte-nance of diversity in marine ecosystems and economies, and the importance of monitoring of the dynamic ecological processes, such as the rate of plankton production in the upper ocean, that create large-scale ecological patterns.

Leslie will also discuss how conservation policies based on resilience science are showing prom-ise around the world and across the United States, most notably in the Chesapeake Bay. Restora-tion of the Bay is underway – evidenced by oyster sanctuaries and eelgrass seeding – to restore lost diversity and increase future resilience.

“Viewing the world through a resilience lens means embracing change and acknowledging the tight connections between humans and nature,” Leslie said. “The way forward will require em-bracing change at many levels — in societal expectations, in business practices, in resource man-agement — to adapt to an ever-changing environment. Resilience science can show the way for-ward, creating more robust marine ecosystems and thriving human communities.”

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>