Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown expert connects resilience science and marine conservation

18.02.2008
Brown University marine conservation scientist Heather Leslie will explain how the fast-growing field of resilience science can produce more effective ocean protection policies at the annual meeting of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.

Resilience science is the study of how ecosystems resist and respond to disturbances, both natu-ral and man-made. This increasingly influential area of environmental science is affecting marine conservation efforts from the Gulf of Maine to the Great Barrier Reef.

At the meeting, held in Boston, Leslie will explain resilience science and its impact in a Feb. 17, 2008 symposium titled “Embracing Change: A New Vision for Management in Coastal Marine Ecosystems.” The symposium runs from 8:30 to 11:30 a.m. in Room 313 of the Hynes Conven-tion Center. Leslie will also attend a Feb. 14, 2008 press briefing on the topic of marine ecosys-tem threats. The briefing kicks off at 1 p.m. in Room 112 of the Hynes Convention Center.

The Sharpe Assistant Professor of Environmental Studies and Biology at Brown, Leslie will dis-cuss at the symposium how ocean ecosystems are increasingly threatened by overfishing, pollu-tion, habitat loss, climate change and coastal development. Understanding why some ecosystems resist these shocks, and continue to deliver benefits such as plentiful fish and pristine beaches, and how others collapse is the subject of resilience science – a budding branch of study that combines approaches from both the life and social sciences.

“Resilience science examines how human and natural forces come together to affect an ecosys-tem’s ability to resist, recover or adapt to disturbances,” Leslie said. “That knowledge can be di-rectly applied to conservation policies – policies that can better protect the oceans.”

At the AAAS symposium, Leslie will explain key elements of resilience science. These include the recognition of the connections between marine systems and human communities, the mainte-nance of diversity in marine ecosystems and economies, and the importance of monitoring of the dynamic ecological processes, such as the rate of plankton production in the upper ocean, that create large-scale ecological patterns.

Leslie will also discuss how conservation policies based on resilience science are showing prom-ise around the world and across the United States, most notably in the Chesapeake Bay. Restora-tion of the Bay is underway – evidenced by oyster sanctuaries and eelgrass seeding – to restore lost diversity and increase future resilience.

“Viewing the world through a resilience lens means embracing change and acknowledging the tight connections between humans and nature,” Leslie said. “The way forward will require em-bracing change at many levels — in societal expectations, in business practices, in resource man-agement — to adapt to an ever-changing environment. Resilience science can show the way for-ward, creating more robust marine ecosystems and thriving human communities.”

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>