Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking sulfur and nitrogen in snow provides clues to acidification

18.02.2008
Scientists investigate accumulated sulfate and nitrate in snow in New Hampshire and follow it after the snow melts.

In forests of the northeastern United States, sulfate and nitrate are the dominant dissolved forms of sulfur and nitrogen in precipitation. In winter, these acidic agents accumulate in the snowpack and are released to groundwater and streams over a short period of time during spring snowmelt.

This pulsed release of sulfate and nitrate in snowmelt can cause episodic acidification in poorly buffered soils, ultimately threatening the health of acid-sensitive biota.

There have been recent studies showing that biological cycling of sulfur and nitrogen persists in cold weather, despite below freezing air temperatures. Much of this activity occurs in soils, where an insulating snow layer keeps soil temperatures warm enough for a range of biological processes. Despite the growing awareness of winter’s role in sulfur and nitrogen cycling, many questions remain unanswered. In particular, there is much uncertainty about how sulfate and nitrate are retained or transformed in forest soils during cold weather.

In the November-December 2007 issue of the Soil Science Society of America Journal (SSSAJ), scientists from the U.S. Forest Service, SUNY-ESF, University of Calgary, and Cary Institute of Ecosystem Studies tracked the movement of sulfate and nitrate deposited in snow. A solution containing isotopically enriched sulfate and nitrate was sprayed on the surface of the snowpack during mid winter. The isotopic values of the labeled sulfate and nitrate were well above background levels and served as a tracer to follow the movement and transformation of these compounds in the ecosystem.

The researchers found that almost all of the labeled sulfate and nitrate deposited on the surface of the snow was recovered in snowmelt water, indicating that there were no significant transformations of sulfate and nitrate in the snowpack. In contrast, about half of the sulfate and nitrate was retained or transformed in the forest floor, suggesting that organic soils are a sink for these compounds during winter. For sulfate, the amount retained or transformed in the forest floor was nearly equal to the amount released, resulting in no significant net gains or losses. A significant amount of ammonium was produced in the forest floor indicating that N mineralization can be important, even when soil temperatures are near freezing. By contrast, net nitrification rates were very low during winter. Tracer results indicated that microbes did not immobilize snowpack nitrate and that other processes such as plant uptake, denitrification, and abiotic nitrate retention were probably more important factors affecting nitrate during snowmelt. More information on controls on nitrogen and sulfur cycling during winter is critical to our understanding of long-term trends and will help us predict how forest ecosystems will respond to future disturbances and global change processes.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://soil.scijournals.org/cgi/content/abstract/71/6/1934

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) www.soils.org is an educational organization based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>