Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking sulfur and nitrogen in snow provides clues to acidification

18.02.2008
Scientists investigate accumulated sulfate and nitrate in snow in New Hampshire and follow it after the snow melts.

In forests of the northeastern United States, sulfate and nitrate are the dominant dissolved forms of sulfur and nitrogen in precipitation. In winter, these acidic agents accumulate in the snowpack and are released to groundwater and streams over a short period of time during spring snowmelt.

This pulsed release of sulfate and nitrate in snowmelt can cause episodic acidification in poorly buffered soils, ultimately threatening the health of acid-sensitive biota.

There have been recent studies showing that biological cycling of sulfur and nitrogen persists in cold weather, despite below freezing air temperatures. Much of this activity occurs in soils, where an insulating snow layer keeps soil temperatures warm enough for a range of biological processes. Despite the growing awareness of winter’s role in sulfur and nitrogen cycling, many questions remain unanswered. In particular, there is much uncertainty about how sulfate and nitrate are retained or transformed in forest soils during cold weather.

In the November-December 2007 issue of the Soil Science Society of America Journal (SSSAJ), scientists from the U.S. Forest Service, SUNY-ESF, University of Calgary, and Cary Institute of Ecosystem Studies tracked the movement of sulfate and nitrate deposited in snow. A solution containing isotopically enriched sulfate and nitrate was sprayed on the surface of the snowpack during mid winter. The isotopic values of the labeled sulfate and nitrate were well above background levels and served as a tracer to follow the movement and transformation of these compounds in the ecosystem.

The researchers found that almost all of the labeled sulfate and nitrate deposited on the surface of the snow was recovered in snowmelt water, indicating that there were no significant transformations of sulfate and nitrate in the snowpack. In contrast, about half of the sulfate and nitrate was retained or transformed in the forest floor, suggesting that organic soils are a sink for these compounds during winter. For sulfate, the amount retained or transformed in the forest floor was nearly equal to the amount released, resulting in no significant net gains or losses. A significant amount of ammonium was produced in the forest floor indicating that N mineralization can be important, even when soil temperatures are near freezing. By contrast, net nitrification rates were very low during winter. Tracer results indicated that microbes did not immobilize snowpack nitrate and that other processes such as plant uptake, denitrification, and abiotic nitrate retention were probably more important factors affecting nitrate during snowmelt. More information on controls on nitrogen and sulfur cycling during winter is critical to our understanding of long-term trends and will help us predict how forest ecosystems will respond to future disturbances and global change processes.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://soil.scijournals.org/cgi/content/abstract/71/6/1934

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) www.soils.org is an educational organization based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>