Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental proof of chaos in food webs

14.02.2008
The traditional idea of the balance of nature has taken quite a beating by a study that appears in the 14 February issue of Nature.

Using a long-term laboratory experiment, the study demonstrates that, even under constant conditions, all species in a food web continued to fluctuate in a chaotic fashion. Chaos makes long-term prediction of species abundances impossible.

Theoretical ecologists already argued in the 1970s that populations of plants and animals might fluctuate in an unpredictable manner, even without external influences. These predictions, derived from chaos theory, attracted a lot of debate. However, only few scientists believed that species in real ecosystems would truly fluctuate in a chaotic fashion. The common perception was that species fluctuations result from changes in external conditions, driven by climate change or other disturbances of the balance of nature.

This classic perspective has been radically changed by new findings of graduate student Elisa Benincà and Professor Jef Huisman of the Institute for Biodiversity and Ecosystem Dynamics of the University of Amsterdam, The Netherlands, in collaboration with colleagues from Wageningen University (The Netherlands), the University of Rostock (Germany), and Cornell University (USA).

The core of their work consists of a laboratory experiment in which a plankton community isolated from the Baltic Sea was studied for more than eight years. The experiment was maintained under constant light and temperature conditions by the German biologist Reinhard Heerkloss, who reported the development of the different plankton species twice a week. To his major surprise, the food web never settled at equilibrium and the species abundances continued to vary wildly. He sent his data to Amsterdam for statistical analysis. This revealed that the fluctuations were caused by the species themselves; competition and predation generated a dynamic food web in which none of the species succeeded in getting the upper hand. Advanced mathematical techniques proved the indisputable presence of chaos in this food web.

According to the authors, these findings have far-reaching implications: “Our results demonstrate that species abundances are essentially unpredictable in the long term. For many years, we thought that a better understanding of all relevant processes would enable sound prediction of changes in species abundances in response to external factors (e.g., climate change). Now we know that things are not as simple as that.” Professors Jef Huisman and Marten Scheffer, both from The Netherlands, had already foreseen the possibility of chaos in plankton communities by means of mathematical models. However, the experimental demonstration of chaos in this study provides the real breakthrough. The limited predictability of species in food webs is comparable to the weather forecast. Benincà: “Short-term prediction is possible, but long-term prediction is not. We can at best indicate within which boundaries species will fluctuate”.

The research was financed by the Earth and Life Sciences Foundation, which is subsidized by the Netherlands Organization for Scientific Research (NWO).

Josje Spinhoven | alfa
Further information:
http://www.uva.nl

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>