Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-sampling study IDs source of excessive ozone pollution

03.06.2002


Findings may lead to more effective regulations for protecting public health

Using data from one of the most comprehensive U.S. air pollution studies ever conducted, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have identified specific volatile organic compounds (VOCs) as key sources of excess ozone smog in industrial areas of Houston, Texas -- which appear to be different from traditional sources of ozone pollution in typical urban areas around the country. Specific efforts to control these industrial emissions of VOCs might be necessary to control Houston’s ozone problem, say the authors, whose findings will appear in an upcoming issue of Geophysical Research Letters (published on-line May 28, 2002).

"A clear understanding of the complex causes of ozone pollution will help to identify cost-effective ways to control smog and protect public health," said atmospheric chemist Larry Kleinman, one of the lead Brookhaven researchers on the study.



Traditional efforts to control ozone have focused on limiting emissions of precursor chemicals such nitrogen oxides (NOx) and/or volatile organic compounds (VOCs), which are emitted from automobiles, power plants, and other industrial sources and form ozone when they react with sunlight in Earth’s atmosphere. But despite improvements in air quality due to more stringent emission standards, many areas still exceed ozone standards.

To get a better understanding of the ozone problem, the Brookhaven team participated in the Texas 2000 Air Quality Study, a collaborative air pollution study involving hundreds of researchers from more than 40 public, private, and academic institutions, which was led by Peter Daum, another atmospheric chemist at Brookhaven.

During August and September of 2000, the scientists conducted air-sampling flights over the Houston-Galveston area -- which experiences the country’s highest ozone levels -- in a specially equipped aircraft operated by the Department of Energy (DOE). The scientists flew over "clean" background areas and over urban and industrial areas with high emission rates of nitrogen oxides and volatile organic compounds, as well as downwind from these sources in regions where ozone is expected to form.

On each flight, the scientists measured levels of ozone, ozone precursors, and photochemical oxidation products. They were then able to calculate the ozone production rate for each of the flight areas. For the present paper, they compared the Houston findings with data collected during several previous DOE-sponsored air quality studies over Nashville, Tennessee; New York, New York; Phoenix, Arizona; and Philadelphia, Pennsylvania.

Ninety two air-sampling flights were conducted in the five-city study. On 13 flights, ozone concentration exceeded the 120 parts per billion (ppb) federal standard set by the Environmental Protection Agency (EPA) to protect human health. Nine of those flights were in Houston. These results agree with data collected by the EPA at ground level. Over the past five years, 15 of the highest 25 ozone concentrations recorded in all of the U.S. were in the Houston-Galveston area.

"We found that most of Houston resembles other urban areas in its concentration of ozone precursors and ozone production rates," said Daum. "The industrial Houston Ship Channel region, however, the location of one of the largest petrochemical complexes in the world, has a distinctive chemistry," he said. There, very high concentrations of VOCs not seen in the other cities, nor in the other parts of Houston -- specifically ethene, propene, and butenes -- lead to excessive production of ozone.

"Calculations based on the aircraft measurements show that the ozone production rate in the Houston Ship Channel region can be as much as five times higher than occurs in the other four cities or in nonindustrial parts of Houston," said Kleinman. "This extra kick in the photochemistry is a direct result of the high concentrations of VOCs emitted by industrial facilities."

###

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields; the U.S. Environmental Protection Agency; and the Texas Natural Resource Conservation Commission.

For more information on the Texas study, see: http://www.utexas.edu/research/ceer/texaqs/ and http://www.bnl.gov/bnlweb/pubaf/pr/2000/bnlpr082400.html.

The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Larry Kleinman lives in Port Jefferson, New York; Peter Daum lives in Shoreham, New York.


Karen McNulty Walsh | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>