Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-sampling study IDs source of excessive ozone pollution

03.06.2002


Findings may lead to more effective regulations for protecting public health

Using data from one of the most comprehensive U.S. air pollution studies ever conducted, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have identified specific volatile organic compounds (VOCs) as key sources of excess ozone smog in industrial areas of Houston, Texas -- which appear to be different from traditional sources of ozone pollution in typical urban areas around the country. Specific efforts to control these industrial emissions of VOCs might be necessary to control Houston’s ozone problem, say the authors, whose findings will appear in an upcoming issue of Geophysical Research Letters (published on-line May 28, 2002).

"A clear understanding of the complex causes of ozone pollution will help to identify cost-effective ways to control smog and protect public health," said atmospheric chemist Larry Kleinman, one of the lead Brookhaven researchers on the study.



Traditional efforts to control ozone have focused on limiting emissions of precursor chemicals such nitrogen oxides (NOx) and/or volatile organic compounds (VOCs), which are emitted from automobiles, power plants, and other industrial sources and form ozone when they react with sunlight in Earth’s atmosphere. But despite improvements in air quality due to more stringent emission standards, many areas still exceed ozone standards.

To get a better understanding of the ozone problem, the Brookhaven team participated in the Texas 2000 Air Quality Study, a collaborative air pollution study involving hundreds of researchers from more than 40 public, private, and academic institutions, which was led by Peter Daum, another atmospheric chemist at Brookhaven.

During August and September of 2000, the scientists conducted air-sampling flights over the Houston-Galveston area -- which experiences the country’s highest ozone levels -- in a specially equipped aircraft operated by the Department of Energy (DOE). The scientists flew over "clean" background areas and over urban and industrial areas with high emission rates of nitrogen oxides and volatile organic compounds, as well as downwind from these sources in regions where ozone is expected to form.

On each flight, the scientists measured levels of ozone, ozone precursors, and photochemical oxidation products. They were then able to calculate the ozone production rate for each of the flight areas. For the present paper, they compared the Houston findings with data collected during several previous DOE-sponsored air quality studies over Nashville, Tennessee; New York, New York; Phoenix, Arizona; and Philadelphia, Pennsylvania.

Ninety two air-sampling flights were conducted in the five-city study. On 13 flights, ozone concentration exceeded the 120 parts per billion (ppb) federal standard set by the Environmental Protection Agency (EPA) to protect human health. Nine of those flights were in Houston. These results agree with data collected by the EPA at ground level. Over the past five years, 15 of the highest 25 ozone concentrations recorded in all of the U.S. were in the Houston-Galveston area.

"We found that most of Houston resembles other urban areas in its concentration of ozone precursors and ozone production rates," said Daum. "The industrial Houston Ship Channel region, however, the location of one of the largest petrochemical complexes in the world, has a distinctive chemistry," he said. There, very high concentrations of VOCs not seen in the other cities, nor in the other parts of Houston -- specifically ethene, propene, and butenes -- lead to excessive production of ozone.

"Calculations based on the aircraft measurements show that the ozone production rate in the Houston Ship Channel region can be as much as five times higher than occurs in the other four cities or in nonindustrial parts of Houston," said Kleinman. "This extra kick in the photochemistry is a direct result of the high concentrations of VOCs emitted by industrial facilities."

###

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields; the U.S. Environmental Protection Agency; and the Texas Natural Resource Conservation Commission.

For more information on the Texas study, see: http://www.utexas.edu/research/ceer/texaqs/ and http://www.bnl.gov/bnlweb/pubaf/pr/2000/bnlpr082400.html.

The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Larry Kleinman lives in Port Jefferson, New York; Peter Daum lives in Shoreham, New York.


Karen McNulty Walsh | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>