Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-sampling study IDs source of excessive ozone pollution

03.06.2002


Findings may lead to more effective regulations for protecting public health

Using data from one of the most comprehensive U.S. air pollution studies ever conducted, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have identified specific volatile organic compounds (VOCs) as key sources of excess ozone smog in industrial areas of Houston, Texas -- which appear to be different from traditional sources of ozone pollution in typical urban areas around the country. Specific efforts to control these industrial emissions of VOCs might be necessary to control Houston’s ozone problem, say the authors, whose findings will appear in an upcoming issue of Geophysical Research Letters (published on-line May 28, 2002).

"A clear understanding of the complex causes of ozone pollution will help to identify cost-effective ways to control smog and protect public health," said atmospheric chemist Larry Kleinman, one of the lead Brookhaven researchers on the study.



Traditional efforts to control ozone have focused on limiting emissions of precursor chemicals such nitrogen oxides (NOx) and/or volatile organic compounds (VOCs), which are emitted from automobiles, power plants, and other industrial sources and form ozone when they react with sunlight in Earth’s atmosphere. But despite improvements in air quality due to more stringent emission standards, many areas still exceed ozone standards.

To get a better understanding of the ozone problem, the Brookhaven team participated in the Texas 2000 Air Quality Study, a collaborative air pollution study involving hundreds of researchers from more than 40 public, private, and academic institutions, which was led by Peter Daum, another atmospheric chemist at Brookhaven.

During August and September of 2000, the scientists conducted air-sampling flights over the Houston-Galveston area -- which experiences the country’s highest ozone levels -- in a specially equipped aircraft operated by the Department of Energy (DOE). The scientists flew over "clean" background areas and over urban and industrial areas with high emission rates of nitrogen oxides and volatile organic compounds, as well as downwind from these sources in regions where ozone is expected to form.

On each flight, the scientists measured levels of ozone, ozone precursors, and photochemical oxidation products. They were then able to calculate the ozone production rate for each of the flight areas. For the present paper, they compared the Houston findings with data collected during several previous DOE-sponsored air quality studies over Nashville, Tennessee; New York, New York; Phoenix, Arizona; and Philadelphia, Pennsylvania.

Ninety two air-sampling flights were conducted in the five-city study. On 13 flights, ozone concentration exceeded the 120 parts per billion (ppb) federal standard set by the Environmental Protection Agency (EPA) to protect human health. Nine of those flights were in Houston. These results agree with data collected by the EPA at ground level. Over the past five years, 15 of the highest 25 ozone concentrations recorded in all of the U.S. were in the Houston-Galveston area.

"We found that most of Houston resembles other urban areas in its concentration of ozone precursors and ozone production rates," said Daum. "The industrial Houston Ship Channel region, however, the location of one of the largest petrochemical complexes in the world, has a distinctive chemistry," he said. There, very high concentrations of VOCs not seen in the other cities, nor in the other parts of Houston -- specifically ethene, propene, and butenes -- lead to excessive production of ozone.

"Calculations based on the aircraft measurements show that the ozone production rate in the Houston Ship Channel region can be as much as five times higher than occurs in the other four cities or in nonindustrial parts of Houston," said Kleinman. "This extra kick in the photochemistry is a direct result of the high concentrations of VOCs emitted by industrial facilities."

###

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields; the U.S. Environmental Protection Agency; and the Texas Natural Resource Conservation Commission.

For more information on the Texas study, see: http://www.utexas.edu/research/ceer/texaqs/ and http://www.bnl.gov/bnlweb/pubaf/pr/2000/bnlpr082400.html.

The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Larry Kleinman lives in Port Jefferson, New York; Peter Daum lives in Shoreham, New York.


Karen McNulty Walsh | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>