Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-sampling study IDs source of excessive ozone pollution

03.06.2002


Findings may lead to more effective regulations for protecting public health

Using data from one of the most comprehensive U.S. air pollution studies ever conducted, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have identified specific volatile organic compounds (VOCs) as key sources of excess ozone smog in industrial areas of Houston, Texas -- which appear to be different from traditional sources of ozone pollution in typical urban areas around the country. Specific efforts to control these industrial emissions of VOCs might be necessary to control Houston’s ozone problem, say the authors, whose findings will appear in an upcoming issue of Geophysical Research Letters (published on-line May 28, 2002).

"A clear understanding of the complex causes of ozone pollution will help to identify cost-effective ways to control smog and protect public health," said atmospheric chemist Larry Kleinman, one of the lead Brookhaven researchers on the study.



Traditional efforts to control ozone have focused on limiting emissions of precursor chemicals such nitrogen oxides (NOx) and/or volatile organic compounds (VOCs), which are emitted from automobiles, power plants, and other industrial sources and form ozone when they react with sunlight in Earth’s atmosphere. But despite improvements in air quality due to more stringent emission standards, many areas still exceed ozone standards.

To get a better understanding of the ozone problem, the Brookhaven team participated in the Texas 2000 Air Quality Study, a collaborative air pollution study involving hundreds of researchers from more than 40 public, private, and academic institutions, which was led by Peter Daum, another atmospheric chemist at Brookhaven.

During August and September of 2000, the scientists conducted air-sampling flights over the Houston-Galveston area -- which experiences the country’s highest ozone levels -- in a specially equipped aircraft operated by the Department of Energy (DOE). The scientists flew over "clean" background areas and over urban and industrial areas with high emission rates of nitrogen oxides and volatile organic compounds, as well as downwind from these sources in regions where ozone is expected to form.

On each flight, the scientists measured levels of ozone, ozone precursors, and photochemical oxidation products. They were then able to calculate the ozone production rate for each of the flight areas. For the present paper, they compared the Houston findings with data collected during several previous DOE-sponsored air quality studies over Nashville, Tennessee; New York, New York; Phoenix, Arizona; and Philadelphia, Pennsylvania.

Ninety two air-sampling flights were conducted in the five-city study. On 13 flights, ozone concentration exceeded the 120 parts per billion (ppb) federal standard set by the Environmental Protection Agency (EPA) to protect human health. Nine of those flights were in Houston. These results agree with data collected by the EPA at ground level. Over the past five years, 15 of the highest 25 ozone concentrations recorded in all of the U.S. were in the Houston-Galveston area.

"We found that most of Houston resembles other urban areas in its concentration of ozone precursors and ozone production rates," said Daum. "The industrial Houston Ship Channel region, however, the location of one of the largest petrochemical complexes in the world, has a distinctive chemistry," he said. There, very high concentrations of VOCs not seen in the other cities, nor in the other parts of Houston -- specifically ethene, propene, and butenes -- lead to excessive production of ozone.

"Calculations based on the aircraft measurements show that the ozone production rate in the Houston Ship Channel region can be as much as five times higher than occurs in the other four cities or in nonindustrial parts of Houston," said Kleinman. "This extra kick in the photochemistry is a direct result of the high concentrations of VOCs emitted by industrial facilities."

###

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields; the U.S. Environmental Protection Agency; and the Texas Natural Resource Conservation Commission.

For more information on the Texas study, see: http://www.utexas.edu/research/ceer/texaqs/ and http://www.bnl.gov/bnlweb/pubaf/pr/2000/bnlpr082400.html.

The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Larry Kleinman lives in Port Jefferson, New York; Peter Daum lives in Shoreham, New York.


Karen McNulty Walsh | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>