Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-sampling study IDs source of excessive ozone pollution

03.06.2002


Findings may lead to more effective regulations for protecting public health

Using data from one of the most comprehensive U.S. air pollution studies ever conducted, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have identified specific volatile organic compounds (VOCs) as key sources of excess ozone smog in industrial areas of Houston, Texas -- which appear to be different from traditional sources of ozone pollution in typical urban areas around the country. Specific efforts to control these industrial emissions of VOCs might be necessary to control Houston’s ozone problem, say the authors, whose findings will appear in an upcoming issue of Geophysical Research Letters (published on-line May 28, 2002).

"A clear understanding of the complex causes of ozone pollution will help to identify cost-effective ways to control smog and protect public health," said atmospheric chemist Larry Kleinman, one of the lead Brookhaven researchers on the study.



Traditional efforts to control ozone have focused on limiting emissions of precursor chemicals such nitrogen oxides (NOx) and/or volatile organic compounds (VOCs), which are emitted from automobiles, power plants, and other industrial sources and form ozone when they react with sunlight in Earth’s atmosphere. But despite improvements in air quality due to more stringent emission standards, many areas still exceed ozone standards.

To get a better understanding of the ozone problem, the Brookhaven team participated in the Texas 2000 Air Quality Study, a collaborative air pollution study involving hundreds of researchers from more than 40 public, private, and academic institutions, which was led by Peter Daum, another atmospheric chemist at Brookhaven.

During August and September of 2000, the scientists conducted air-sampling flights over the Houston-Galveston area -- which experiences the country’s highest ozone levels -- in a specially equipped aircraft operated by the Department of Energy (DOE). The scientists flew over "clean" background areas and over urban and industrial areas with high emission rates of nitrogen oxides and volatile organic compounds, as well as downwind from these sources in regions where ozone is expected to form.

On each flight, the scientists measured levels of ozone, ozone precursors, and photochemical oxidation products. They were then able to calculate the ozone production rate for each of the flight areas. For the present paper, they compared the Houston findings with data collected during several previous DOE-sponsored air quality studies over Nashville, Tennessee; New York, New York; Phoenix, Arizona; and Philadelphia, Pennsylvania.

Ninety two air-sampling flights were conducted in the five-city study. On 13 flights, ozone concentration exceeded the 120 parts per billion (ppb) federal standard set by the Environmental Protection Agency (EPA) to protect human health. Nine of those flights were in Houston. These results agree with data collected by the EPA at ground level. Over the past five years, 15 of the highest 25 ozone concentrations recorded in all of the U.S. were in the Houston-Galveston area.

"We found that most of Houston resembles other urban areas in its concentration of ozone precursors and ozone production rates," said Daum. "The industrial Houston Ship Channel region, however, the location of one of the largest petrochemical complexes in the world, has a distinctive chemistry," he said. There, very high concentrations of VOCs not seen in the other cities, nor in the other parts of Houston -- specifically ethene, propene, and butenes -- lead to excessive production of ozone.

"Calculations based on the aircraft measurements show that the ozone production rate in the Houston Ship Channel region can be as much as five times higher than occurs in the other four cities or in nonindustrial parts of Houston," said Kleinman. "This extra kick in the photochemistry is a direct result of the high concentrations of VOCs emitted by industrial facilities."

###

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields; the U.S. Environmental Protection Agency; and the Texas Natural Resource Conservation Commission.

For more information on the Texas study, see: http://www.utexas.edu/research/ceer/texaqs/ and http://www.bnl.gov/bnlweb/pubaf/pr/2000/bnlpr082400.html.

The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Larry Kleinman lives in Port Jefferson, New York; Peter Daum lives in Shoreham, New York.


Karen McNulty Walsh | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>