Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient leaves point to climate change effect on insects

12.02.2008
Insects will feast and leafy plants will suffer if temperatures warm and atmospheric carbon dioxide increases, according to a team of researchers who studied evidence of insect feeding on fossil leaves from before, during and after the Paleocene-Eocene Thermal Maximum.

The PETM occurred 55.8 million years ago and was an abrupt global warming event linked to a temporary increase in carbon dioxide in the atmosphere. This event is comparable in size and rate to the current climate changes brought on by human activity.

"Our study suggests that increased insect herbivory is likely to be a net, long-term effect of anthropogenic carbon dioxide increase and warming temperature," the researchers report today (Feb.11) in the online Proceedings of the National Academy of Sciences.

Today, the tropics have the most diverse insect populations and the highest rate of herbivore damage on leaves. This implies that there is a correlation between insect feeding and temperature. The researchers, who include Ellen D. Currano, graduate student in geoscience, and Peter Wilf, associate professor of geoscience, Penn State; Scott L. Wing and Conrad C. Labandeira, Department of Paleobiology, Smithsonian Institution; Elizabeth C. Lovelock, graduate student in earth science, University of California, Santa Barbara; and Dana L. Royer, assistant professor, earth and environmental sciences, Wesleyan University, looked at fossil leaves from the Bighorn Basin in north central Wyoming from layers deposited in the late Paleocene, in the middle of the PETM and in the early Eocene.

"We looked at these time periods to see evidence of insect feeding and to count the types of damage," says Currano. "We looked to see how much damage the insects did and the kinds of leaves on which the damage occurred."

They identified 50 types of damage on the fossil leaves including holes of varying sizes, chewed-out areas, galls and mines.

"We can identify certain insect groups by the way they feed on a leaf," says Currano. "Some make mines while others chew along the edge of the leaf."

By looking at modern insect's behavior, the researchers can determine the types of insects eating the fossil leaves. They compare modern leaf damage to that occurring in the past.

The team found that the percent of leaves damaged by insects was 15 to 38 percent during the Paleocene and 33 percent during the Eocene, but increased to 57 percent during the intermediate PETM. This large increase in insect herbivory corresponded to a time of increased carbon dioxide and temperatures. The researchers also found that the increased feeding occurred in all plant species and that a more diverse array of insects fed on the leaves.

The researchers investigated the leaves that grew during the PETM to ensure that the leaves growing then were not tougher and less tasty than those found before or after that period. They found no differences between the heavily eaten leaves and those from time periods with less herbivory.

"With more carbon dioxide available to plants, photosynthesis is easier and plants can make the same amount of food for themselves without having to put so much protein in their leaves," says Currano.

Consequently, when carbon dioxide increases, leaves have less protein and insects need to eat more to acquire the nutrients they need. While increased carbon dioxide is good for the plants in that they can increase growth, plants also suffer from increased feeding by insects.

The researchers explain that the increase in insect feeding is a result of the tripling of carbon dioxide in the atmosphere during the PETM and the accompanying rise in temperature. They think that increases in temperature and carbon dioxide levels during the PETM are good analogs for the future and therefore, that plants may eventually experience higher rates of feeding as humans put more carbon dioxide into the atmosphere.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>