Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient leaves point to climate change effect on insects

12.02.2008
Insects will feast and leafy plants will suffer if temperatures warm and atmospheric carbon dioxide increases, according to a team of researchers who studied evidence of insect feeding on fossil leaves from before, during and after the Paleocene-Eocene Thermal Maximum.

The PETM occurred 55.8 million years ago and was an abrupt global warming event linked to a temporary increase in carbon dioxide in the atmosphere. This event is comparable in size and rate to the current climate changes brought on by human activity.

"Our study suggests that increased insect herbivory is likely to be a net, long-term effect of anthropogenic carbon dioxide increase and warming temperature," the researchers report today (Feb.11) in the online Proceedings of the National Academy of Sciences.

Today, the tropics have the most diverse insect populations and the highest rate of herbivore damage on leaves. This implies that there is a correlation between insect feeding and temperature. The researchers, who include Ellen D. Currano, graduate student in geoscience, and Peter Wilf, associate professor of geoscience, Penn State; Scott L. Wing and Conrad C. Labandeira, Department of Paleobiology, Smithsonian Institution; Elizabeth C. Lovelock, graduate student in earth science, University of California, Santa Barbara; and Dana L. Royer, assistant professor, earth and environmental sciences, Wesleyan University, looked at fossil leaves from the Bighorn Basin in north central Wyoming from layers deposited in the late Paleocene, in the middle of the PETM and in the early Eocene.

"We looked at these time periods to see evidence of insect feeding and to count the types of damage," says Currano. "We looked to see how much damage the insects did and the kinds of leaves on which the damage occurred."

They identified 50 types of damage on the fossil leaves including holes of varying sizes, chewed-out areas, galls and mines.

"We can identify certain insect groups by the way they feed on a leaf," says Currano. "Some make mines while others chew along the edge of the leaf."

By looking at modern insect's behavior, the researchers can determine the types of insects eating the fossil leaves. They compare modern leaf damage to that occurring in the past.

The team found that the percent of leaves damaged by insects was 15 to 38 percent during the Paleocene and 33 percent during the Eocene, but increased to 57 percent during the intermediate PETM. This large increase in insect herbivory corresponded to a time of increased carbon dioxide and temperatures. The researchers also found that the increased feeding occurred in all plant species and that a more diverse array of insects fed on the leaves.

The researchers investigated the leaves that grew during the PETM to ensure that the leaves growing then were not tougher and less tasty than those found before or after that period. They found no differences between the heavily eaten leaves and those from time periods with less herbivory.

"With more carbon dioxide available to plants, photosynthesis is easier and plants can make the same amount of food for themselves without having to put so much protein in their leaves," says Currano.

Consequently, when carbon dioxide increases, leaves have less protein and insects need to eat more to acquire the nutrients they need. While increased carbon dioxide is good for the plants in that they can increase growth, plants also suffer from increased feeding by insects.

The researchers explain that the increase in insect feeding is a result of the tripling of carbon dioxide in the atmosphere during the PETM and the accompanying rise in temperature. They think that increases in temperature and carbon dioxide levels during the PETM are good analogs for the future and therefore, that plants may eventually experience higher rates of feeding as humans put more carbon dioxide into the atmosphere.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>