Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Backpacking flying lemurs reveal their gliding secrets

08.02.2008
A researcher from the Royal Veterinary College, working with colleagues from the University of California at Berkeley and the National University of Singapore, has documented in detail the gliding behaviour of the Malayan colugo in the wild, for the first time, using a novel measurement technique.

The development of a custom-designed three dimensional acceleration sensing 'backpack' has enabled scientists to examine the gliding and landing behaviour of a largely unknown nocturnal mammal in its natural habitat. The study, published today in the journal Proceedings of the Royal Society B, has provided important information which improves our understanding of the behaviour and biomechanics of gliding animals, and could aid in the design of flexible winged aircraft, like hang-gliders or micro-air vehicles.

Malayan colugos are incredible animals. They resemble very large flying squirrels, yet are a cousin to primates (adults measure around 30-40 cms long) with wings of skin between their hands and feet that are the size of a large doormat when extended.

"Despite being common throughout their natural range the Malayan colugo is quite poorly understood because it's hard to measure things about an animal that moves around at night, lives 30 metres up a tree, and can glide 100 metres away from you in an arbitrary direction in 10 seconds," said Andrew Spence, RCUK research fellow in biomechanics at the Royal Veterinary College, who teamed up with colleagues Greg Byrnes and Norman Lim. "Our new sensing backpacks have given us an insight into the behaviour of these fascinating creatures and we can now use this new technology to learn more about other inaccessible and understudied animals in the future."

The researchers were able to prove that the colugo can alter the aerodynamic forces acting upon it in flight, in order to reduce the effect of landing forces, and thus limit risk of injury. The creatures are able to glide at a steady speed and as they come in for landing they appear to be able to do a very precise manoevre that slows their speed and simultaneously orientates them correctly for spreading the impact of landing across all four limbs. The researchers were able to demonstrate a drastic reduction in landing forces for glides longer than about two seconds, where colugos are able to perform a parachute-like behaviour and re-orient themselves. This reduction in impact forces over long gliding distances has been predicted from aerodynamic theory, but until now scientists have not been able to demonstrate it conclusively in the wild.

By combining tiny microelectronic sensors and memory devices, such as the acceleration sensors that are used in automobile airbags and the Nintendo Wii controller, with memory chips founds in devices like the Ipod, the researchers were able to design miniature 'backpacks' that could be adhered to the colugo to register its movement. The researchers, working in the rainforests of Singapore and partly funded by the Singapore Zoological Gardens, were able to carefully catch the nocturnal adult colugos by hand whilst they were resting low on trees during the day. They shaved a small patch of fur off the animal, stuck the backback to its exposed skin using a surgical glue and released the animals back in the wild. Colugos, which can weigh up to 2 kg, were able to wear the sensors and glide uninhibited for several days before the adhesive naturally fails and the backpack falls to the ground. The backpacks were then recovered using a radio receiver.

Becci Cussens | alfa
Further information:
http://publishing.royalsociety.org/index.cfm?page=1087

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>