Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Backpacking flying lemurs reveal their gliding secrets

08.02.2008
A researcher from the Royal Veterinary College, working with colleagues from the University of California at Berkeley and the National University of Singapore, has documented in detail the gliding behaviour of the Malayan colugo in the wild, for the first time, using a novel measurement technique.

The development of a custom-designed three dimensional acceleration sensing 'backpack' has enabled scientists to examine the gliding and landing behaviour of a largely unknown nocturnal mammal in its natural habitat. The study, published today in the journal Proceedings of the Royal Society B, has provided important information which improves our understanding of the behaviour and biomechanics of gliding animals, and could aid in the design of flexible winged aircraft, like hang-gliders or micro-air vehicles.

Malayan colugos are incredible animals. They resemble very large flying squirrels, yet are a cousin to primates (adults measure around 30-40 cms long) with wings of skin between their hands and feet that are the size of a large doormat when extended.

"Despite being common throughout their natural range the Malayan colugo is quite poorly understood because it's hard to measure things about an animal that moves around at night, lives 30 metres up a tree, and can glide 100 metres away from you in an arbitrary direction in 10 seconds," said Andrew Spence, RCUK research fellow in biomechanics at the Royal Veterinary College, who teamed up with colleagues Greg Byrnes and Norman Lim. "Our new sensing backpacks have given us an insight into the behaviour of these fascinating creatures and we can now use this new technology to learn more about other inaccessible and understudied animals in the future."

The researchers were able to prove that the colugo can alter the aerodynamic forces acting upon it in flight, in order to reduce the effect of landing forces, and thus limit risk of injury. The creatures are able to glide at a steady speed and as they come in for landing they appear to be able to do a very precise manoevre that slows their speed and simultaneously orientates them correctly for spreading the impact of landing across all four limbs. The researchers were able to demonstrate a drastic reduction in landing forces for glides longer than about two seconds, where colugos are able to perform a parachute-like behaviour and re-orient themselves. This reduction in impact forces over long gliding distances has been predicted from aerodynamic theory, but until now scientists have not been able to demonstrate it conclusively in the wild.

By combining tiny microelectronic sensors and memory devices, such as the acceleration sensors that are used in automobile airbags and the Nintendo Wii controller, with memory chips founds in devices like the Ipod, the researchers were able to design miniature 'backpacks' that could be adhered to the colugo to register its movement. The researchers, working in the rainforests of Singapore and partly funded by the Singapore Zoological Gardens, were able to carefully catch the nocturnal adult colugos by hand whilst they were resting low on trees during the day. They shaved a small patch of fur off the animal, stuck the backback to its exposed skin using a surgical glue and released the animals back in the wild. Colugos, which can weigh up to 2 kg, were able to wear the sensors and glide uninhibited for several days before the adhesive naturally fails and the backpack falls to the ground. The backpacks were then recovered using a radio receiver.

Becci Cussens | alfa
Further information:
http://publishing.royalsociety.org/index.cfm?page=1087

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>