Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the wood for the trees: research reveals the survival secrets of forest trees

31.05.2002


Species extinction or `biodiversity loss` has accelerated at an alarming rate over the past century. Although much of the blame has been laid at the door of human activity, biologists are looking at the factors that influence how species-particularly similar species-co-exist, in their efforts to better understand how the balance of species can be maintained.



New research into forest trees by Dr Colleen Kelly of the Division of Ecology and Biodiversity at the University of Southampton has shown that trees of similar species growing together in a forest will follow different cycles of success in achieving maturity. In successful forests these cycles complement each other allowing both species to grow without one displacing the other.

`We know a lot about how different species co-exist in nature, but the means by which similar species can also co-exist-without one necessarily dominating the other-is a central question in ecology,` says Dr Kelly. `It is also one of growing importance as humans become increasingly responsible for the construction and maintenance of `natural` areas, in cities and countryside.`


The report of Dr Kelly`s study, written in collaboration with Dr Michael Bowler of the University of Oxford, has been published in the journal Nature this month.

Dr Kelly`s research team looked at trees in one of the most diverse deciduous forests in the world, near Puerto Vallarta on the Pacific coast of Mexico. They found that while one species might be more sensitive to some fluctuating factor in the environment, such as drought or pests, another would grow less rapidly but be better at withstanding adverse conditions.

`The slower growing tree has to spend energy to produce a larger, deeper root system to stave off drought effects, or to make chemical defences that repel insects, explains Dr Kelly. `If the young of the two species meet, the faster growing species will be able to outgrow and essentially displace the other.`

`In times of plentiful rainfall or low levels of pests, the young of the fast growing species survive and the others do not. But when conditions deteriorate the seedlings and saplings of the "slow but sure" species are the ones that prosper.`

The study also showed that although there will be periods when no young are able to survive because the trees that make it to adulthood are so long-lived, the total numbers of adults in the forest as a whole does not fluctuate.

However, the cycles of seedling and sapling survival do leave their mark in the adult population. `There will be gaps in the ages of the adults to show the times when no young trees managed to make through the gauntlet of enemies and catastrophes,` adds Dr Kelly. `This process is called "storage" dynamics because the ability to recover from the bad years when the young trees don`t survive is "stored" in the reproductive ability of the standing adults.`

Sarah Watts | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>