Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing the wood for the trees: research reveals the survival secrets of forest trees


Species extinction or `biodiversity loss` has accelerated at an alarming rate over the past century. Although much of the blame has been laid at the door of human activity, biologists are looking at the factors that influence how species-particularly similar species-co-exist, in their efforts to better understand how the balance of species can be maintained.

New research into forest trees by Dr Colleen Kelly of the Division of Ecology and Biodiversity at the University of Southampton has shown that trees of similar species growing together in a forest will follow different cycles of success in achieving maturity. In successful forests these cycles complement each other allowing both species to grow without one displacing the other.

`We know a lot about how different species co-exist in nature, but the means by which similar species can also co-exist-without one necessarily dominating the other-is a central question in ecology,` says Dr Kelly. `It is also one of growing importance as humans become increasingly responsible for the construction and maintenance of `natural` areas, in cities and countryside.`

The report of Dr Kelly`s study, written in collaboration with Dr Michael Bowler of the University of Oxford, has been published in the journal Nature this month.

Dr Kelly`s research team looked at trees in one of the most diverse deciduous forests in the world, near Puerto Vallarta on the Pacific coast of Mexico. They found that while one species might be more sensitive to some fluctuating factor in the environment, such as drought or pests, another would grow less rapidly but be better at withstanding adverse conditions.

`The slower growing tree has to spend energy to produce a larger, deeper root system to stave off drought effects, or to make chemical defences that repel insects, explains Dr Kelly. `If the young of the two species meet, the faster growing species will be able to outgrow and essentially displace the other.`

`In times of plentiful rainfall or low levels of pests, the young of the fast growing species survive and the others do not. But when conditions deteriorate the seedlings and saplings of the "slow but sure" species are the ones that prosper.`

The study also showed that although there will be periods when no young are able to survive because the trees that make it to adulthood are so long-lived, the total numbers of adults in the forest as a whole does not fluctuate.

However, the cycles of seedling and sapling survival do leave their mark in the adult population. `There will be gaps in the ages of the adults to show the times when no young trees managed to make through the gauntlet of enemies and catastrophes,` adds Dr Kelly. `This process is called "storage" dynamics because the ability to recover from the bad years when the young trees don`t survive is "stored" in the reproductive ability of the standing adults.`

Sarah Watts | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>