Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

River plants may play major role in health of ocean coastal waters

31.01.2008
Recent research at MIT’s Department of Civil and Environmental Engineering suggests how aquatic plants in rivers and streams may play a major role in the health of large areas of ocean coastal waters.

This work, which appeared in the Dec. 25 issue of the Journal of Fluid Mechanics (JFM), describes the physics of water flow around aquatic plants and demonstrates the importance of basic research to environmental engineering. This new understanding can be used to guide restoration work in rivers, wetlands and coastal zones by helping ecologists determine the vegetation patch length and planting density necessary to damp storm surge, lower nutrient levels, or promote sediment accumulation and make the new patch stable against erosion.

Professor Heidi Nepf is principle investigator on the research. Brian White, a former graduate student at MIT who is now an assistant professor at the University of North Carolina, is co-author with Nepf of the JFM paper. Marco Ghisalberti, a postdoctoral associate at the University of Western Australia, worked with Nepf on some aspects of this research when he was an MIT graduate student. This work was supported by grants from the National Science Foundation.

Traditionally people have removed vegetation growing along rivers to speed the passage of waters and prevent flooding. But in recent years that practice has changed. Ecologists now advocate replanting, because vegetation provides important habitat. In addition, aquatic plants and the microbial populations they support remove excess nutrients from the water. The removal of too many plants contributes to nutrient overload in rivers, which can subsequently lead to coastal dead zones—oxygen-deprived areas of coastal water where nothing can survive. One well-documented dead zone in the Gulf of Mexico, fed by nutrient pollution from the Mississippi River, grows to be as large as the state of New Jersey every summer.

Nepf’s work—which describes how water flows into and through a plant canopy, and how long it remains within the canopy—can be used to find the right balance between canopy and flow in a river.

Vegetation generates resistance to flow, so the velocity within a canopy is much less than the velocity above it. This spatial gradient of velocity, or shear, produces a coherent swirl of water motion, called a vortex. Using scaled physical models, Nepf and Ghisalberti described the dynamic nature of these vortices and developed predictive models for canopy flushing that fit available field observations. The team showed that vortices control the flushing of canopies by controlling the exchange of fluid between the canopy and overflowing water. Similar vortices also form at the edge of a vegetated channel, setting the exchange between the channel and the vegetation.

The structure and density of the canopy controls the extent to which flow is reduced in the canopy and also the water-renewal time, which ranges from minutes to hours for typical submerged canopies. These timescales are comparable to those measured in much-studied underground hyporheic zones, suggesting that channel vegetation could play a role similar to these zones in nutrient retention. In dense canopies, the larger vortices cannot penetrate the full canopy height. Water renewal in the lower canopy is controlled by much smaller turbulence generated by individual stems and branches.

“We now understand more precisely how water moves through and around aquatic canopies, and know that the vortices control the water renewal and momentum exchange,” said Nepf. “Knowing the timescale over which water is renewed in a bed, and knowing the degree to which currents are reduced within the beds help researchers determine how the size and shape of a canopy will impact stream restoration.”

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>