Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment prediction tools off the mark

31.01.2008
A recent study led by Smithsonian ecologist Kathy Boomer suggests it is time for a change in at least one area of watershed management.

Boomer has been examining the tools scientists and managers use to predict how much sediment runs into the Chesapeake Bay, and by her account, they are way off the mark. The study, co-authored by SERC ecological modeler Donald Weller and ecologist Thomas Jordan, appears in the January/February issue of the Journal of Environmental Quality.

Sediment running into the bay reduces light, suffocates underwater organisms and is a significant source of phosphorous, a nutrient that essentially fertilizes the water promoting algal blooms and many other problems in the bay.

“Cities and counties are under increasing pressure to meet total maximum daily loads set by state and federal agencies and to understand where sediments come from,” she said. “So we tested the tools most widely used now to predict sediment delivery.”

Her work has led to a new tactic. “We’re moving away from focusing on upland erosion and looking more at what happens near streams and in streams during events with high levels of stream sediments.”

The new study compared actual measurement of sediments in more than 100 streams in the Chesapeake watershed with predictions from several of the most up-to-date models. All the models failed completely to identify streams with high sediment levels.

“There was no correlation at all between the model predictions and the measurements,” said Boomer. The study is among the first to directly compare predictions of the widely used models with actual observations of sediments in a large number of streams.

The problem, she said, is that the most widely used models all begin with the same tool, the Universal Sediment Loss Equation. The USLE estimates erosion from five factors: topography, soil erodibility, annual average rainfall amount and intensity, land cover, and land management practices. Boomer emphasized that the USLE was developed to help farmers limit topsoil loss from individual fields rather than to predict sediment delivery from complex watersheds to streams.

As often applied, the USLE gives an average annual erosion rate for the whole watershed draining into a stream. But not all of the eroded soil makes it into the water, so the estimates do not translate directly into sediment delivery rates. To account for the discrepancy, different models incorporate a wide variety of adjustments. According to Boomer, the adjusted models still do not work, partly because erosion rate is not the best information to start with.

During the study, Boomer and colleagues Weller and Jordan compared erosion rates and sediment yields estimated from regional application of the USLE, the automated Revised-USLE, and five widely used sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed.

“We did the same comparisons for an independent set of 23 watersheds monitored by the U.S. Geological Society,” Boomer said.

Sediment delivery predictions, which were highly correlated with USLE erosion predictions, exceeded observed sediment yields by more than 100 percent. The RUSLE2 erosion estimates also were highly correlated with the USLE predictions, indicating that the method of implementing the USLE model did not greatly change the results.

“Sediment delivery is largely associated with specific rain events and stream bank erosion,” she said. “So, USLE-based models that emphasize long-term annual average erosion from uplands provide limited information to land managers.”

With a new focus on what is happening in and near the streams themselves, Boomer and her colleagues hope to develop more reliable tools to predict sediment running into Chesapeake Bay—tools that can be used in other lakes and estuaries as well.

Kimbra Cutlip | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>