Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment prediction tools off the mark

31.01.2008
A recent study led by Smithsonian ecologist Kathy Boomer suggests it is time for a change in at least one area of watershed management.

Boomer has been examining the tools scientists and managers use to predict how much sediment runs into the Chesapeake Bay, and by her account, they are way off the mark. The study, co-authored by SERC ecological modeler Donald Weller and ecologist Thomas Jordan, appears in the January/February issue of the Journal of Environmental Quality.

Sediment running into the bay reduces light, suffocates underwater organisms and is a significant source of phosphorous, a nutrient that essentially fertilizes the water promoting algal blooms and many other problems in the bay.

“Cities and counties are under increasing pressure to meet total maximum daily loads set by state and federal agencies and to understand where sediments come from,” she said. “So we tested the tools most widely used now to predict sediment delivery.”

Her work has led to a new tactic. “We’re moving away from focusing on upland erosion and looking more at what happens near streams and in streams during events with high levels of stream sediments.”

The new study compared actual measurement of sediments in more than 100 streams in the Chesapeake watershed with predictions from several of the most up-to-date models. All the models failed completely to identify streams with high sediment levels.

“There was no correlation at all between the model predictions and the measurements,” said Boomer. The study is among the first to directly compare predictions of the widely used models with actual observations of sediments in a large number of streams.

The problem, she said, is that the most widely used models all begin with the same tool, the Universal Sediment Loss Equation. The USLE estimates erosion from five factors: topography, soil erodibility, annual average rainfall amount and intensity, land cover, and land management practices. Boomer emphasized that the USLE was developed to help farmers limit topsoil loss from individual fields rather than to predict sediment delivery from complex watersheds to streams.

As often applied, the USLE gives an average annual erosion rate for the whole watershed draining into a stream. But not all of the eroded soil makes it into the water, so the estimates do not translate directly into sediment delivery rates. To account for the discrepancy, different models incorporate a wide variety of adjustments. According to Boomer, the adjusted models still do not work, partly because erosion rate is not the best information to start with.

During the study, Boomer and colleagues Weller and Jordan compared erosion rates and sediment yields estimated from regional application of the USLE, the automated Revised-USLE, and five widely used sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed.

“We did the same comparisons for an independent set of 23 watersheds monitored by the U.S. Geological Society,” Boomer said.

Sediment delivery predictions, which were highly correlated with USLE erosion predictions, exceeded observed sediment yields by more than 100 percent. The RUSLE2 erosion estimates also were highly correlated with the USLE predictions, indicating that the method of implementing the USLE model did not greatly change the results.

“Sediment delivery is largely associated with specific rain events and stream bank erosion,” she said. “So, USLE-based models that emphasize long-term annual average erosion from uplands provide limited information to land managers.”

With a new focus on what is happening in and near the streams themselves, Boomer and her colleagues hope to develop more reliable tools to predict sediment running into Chesapeake Bay—tools that can be used in other lakes and estuaries as well.

Kimbra Cutlip | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>