Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elephant engineers

30.01.2008
Pachyderms incidentally create habitat for lizards

It is like the premise of a popular home improvement show: in the before photos, the surroundings are undesirable and in the after shot there’s lots of attractive spaces to grab a meal, start a family and relax in seclusion from life’s stresses.

The difference here is that the potential new homeowner is a lizard and the renovations come -- not from a sophisticated Manhattan designer -- but instead from a herd of elephants. An examination of the connections between elephants and lizards appears this month in the journal Ecology, where a researcher reports that the elephants’ eating habits have a strong influence on the lizards’ habitat choices. The results demonstrate an important and little understood aspect of ecosystem engineering, and may help land managers working on wildlife refuges in Africa.

Working at the Mpala Research Center in Kenya between 2004 and 2007, the author of the report, Robert M. Pringle of Stanford University, found that Kenya dwarf geckos (Lygodactylus keniensis) showed a strong preference for trees which had been damaged by browsing elephants (Loxodontia africana). In fact, the local lizard population increased proportionally with the number of damaged trees. By contrast, lizards were virtually absent from undamaged trees in the same study area.

Further investigations revealed that the preference was due to hiding places which were incidentally created by the elephants’ activities.

Pringle’s results are important from a theoretical as well as management standpoint. Ecosystem engineering -- the idea that activities of one kind of animal can create habitat for other animals -- is a relatively new concept, having emerged only about 15 years ago. When examining such engineers, ecologists would like to predict whether their activities will have a positive or negative impact on the abundance of other species in the same ecosystem. In the past, some scientists have hypothesized that when the engineers (such as the elephants in this case) make a habitat more complex, that habitat becomes more appealing to a larger variety of animals. This research indicates that may indeed be the case in African savannas.

Pringle notes that elephants really “shake up” the savanna landscape. The level of disturbance from a feeding herd is almost akin to that of a tornado touching down; trees and shrubs are splintered, cracked, and fissured and large branches are strewn all over the ground.

“The ripped up trees are like labyrinths compared to the pristine trees, which helps boost lizard densities,” says Pringle. This may be because the twisted crevices in the elephant-damaged trees provide shelter from predators and the harsh arid environment, or because they provide suitable spots for female lizards to lay eggs.

A better understanding of the elephants’ influence on their ecosystem is a particularly pressing need in this region. There are concerns in many parts of Africa that poaching may wipe out the large animals on lands where they are not strictly protected. Elephants, however, eat a tremendous amount, and their eating habits can be especially destructive in smaller tracts of land. Since they have no real natural predators besides humans, they can sometimes eat themselves out of house and home in the areas where they are protected from hunters.

Because of these management dilemmas, finding an “optimum number” of elephants for any given refuge or wildlife area has become a hot topic. By gaining a better understanding of ecosystem engineering and the effects that large herbivores have on other species, researchers may gain more insight into how the entire savanna ecosystem works.

“If you have no elephants,” says Pringle, “then you’re missing this powerful source of disturbance, since their activities can provide other species with a chance to thrive. On the other hand, if you have too many elephants, then they can actually suppress the abundance of smaller animals by reducing their habitat and out-competing them for food.”

Biodiversity, the researcher says, may well be greatest in the middle ranges of elephant abundance.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>