Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Generalist bacteria' discovered in coastal waters may be more flexible than known before

29.01.2008
Marine bacteria come almost a billion to a cup. Until recently, however, little has been known about how these minute creatures live or what they need to flourish.

Now, new research led by a marine microbial ecologist at the University of Georgia is showing for the first time that the roles played by bacteria in coastal waters aren’t nearly as specific as some scientists suspected. In fact, these bacteria are generalists in how they get their nourishment and may have the option of doing many different things, depending on what works best at the time.

While the new research confirms predictions by ecological theorists, it is among the first clear demonstrations at the experimental level that coastal ocean bacteria can act as “tidewater utility infielders,” changing their functions depending on local food supply.

“If you asked me earlier how different species of coastal bacteria use their available food supplies, I would have said each species is optimized for very specialized uses,” said Mary Ann Moran. “But our new research says most are carrying out multiple processes when it comes to carbon cycling.”

The research was just published in the journal Nature. Co-authors on the paper are postdoctoral associate Xiaozhen Mou, bioinformaticist Shulei Sun and professor emeritus Robert Hodson, all of the University of Georgia, and Robert Edwards of San Diego State University.

Learning just how everything works together in the oceans has been a daunting task, but scientists agree that it is crucial. The paper published in Nature specifically examined the metabolic capabilities of bacteria involved in breaking down organic carbon compounds.

Scientists don’t yet understand much about how the various genes in ocean bacteria are packaged together. But as the ocean changes, they would like to model and predict how the processes mediated by the genes could be affected.

Only in the past 15 years have scientists been able to begin identifying the bacteria in oceans at all. Part of this is simply because ocean bacteria are notoriously hard to culture in the lab, and many can’t be cultured yet at all. This makes studying them extremely difficult. New methods, however, are making such studies easier. One of them, which formed the basis for this research, is metagenomics, which bypasses the culturing step entirely by directly sequencing the mixture of bacterial genomes in seawater.

Understanding more about the genomes of bacteria has allowed researchers to ask much narrower questions than ever before, and the result has been a new ability to understand how marine bacteria live and interact in the ocean.

The research in the current study was done in an area off the coast of Sapelo Island, Ga., and while the findings about bacterial generalists may hold true for similar coastal ecosystems, researchers don’t know if the same will be true in deep-ocean or other sea environments.

“We can understand a great deal about the health of the oceans by understanding more about how the bacteria that live in our coastal waters function,” said Moran.

The idea for bacterial generalists isn’t new, but this is the first experimental evidence for marine coastal bacteria as generalists.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>