Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Generalist bacteria' discovered in coastal waters may be more flexible than known before

29.01.2008
Marine bacteria come almost a billion to a cup. Until recently, however, little has been known about how these minute creatures live or what they need to flourish.

Now, new research led by a marine microbial ecologist at the University of Georgia is showing for the first time that the roles played by bacteria in coastal waters aren’t nearly as specific as some scientists suspected. In fact, these bacteria are generalists in how they get their nourishment and may have the option of doing many different things, depending on what works best at the time.

While the new research confirms predictions by ecological theorists, it is among the first clear demonstrations at the experimental level that coastal ocean bacteria can act as “tidewater utility infielders,” changing their functions depending on local food supply.

“If you asked me earlier how different species of coastal bacteria use their available food supplies, I would have said each species is optimized for very specialized uses,” said Mary Ann Moran. “But our new research says most are carrying out multiple processes when it comes to carbon cycling.”

The research was just published in the journal Nature. Co-authors on the paper are postdoctoral associate Xiaozhen Mou, bioinformaticist Shulei Sun and professor emeritus Robert Hodson, all of the University of Georgia, and Robert Edwards of San Diego State University.

Learning just how everything works together in the oceans has been a daunting task, but scientists agree that it is crucial. The paper published in Nature specifically examined the metabolic capabilities of bacteria involved in breaking down organic carbon compounds.

Scientists don’t yet understand much about how the various genes in ocean bacteria are packaged together. But as the ocean changes, they would like to model and predict how the processes mediated by the genes could be affected.

Only in the past 15 years have scientists been able to begin identifying the bacteria in oceans at all. Part of this is simply because ocean bacteria are notoriously hard to culture in the lab, and many can’t be cultured yet at all. This makes studying them extremely difficult. New methods, however, are making such studies easier. One of them, which formed the basis for this research, is metagenomics, which bypasses the culturing step entirely by directly sequencing the mixture of bacterial genomes in seawater.

Understanding more about the genomes of bacteria has allowed researchers to ask much narrower questions than ever before, and the result has been a new ability to understand how marine bacteria live and interact in the ocean.

The research in the current study was done in an area off the coast of Sapelo Island, Ga., and while the findings about bacterial generalists may hold true for similar coastal ecosystems, researchers don’t know if the same will be true in deep-ocean or other sea environments.

“We can understand a great deal about the health of the oceans by understanding more about how the bacteria that live in our coastal waters function,” said Moran.

The idea for bacterial generalists isn’t new, but this is the first experimental evidence for marine coastal bacteria as generalists.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>