Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bacteria – big money

29.01.2008
Bacteria in oil reservoirs produce give more oil.

They are tiny, and they eat oil. Still, they are the ones that can help us obtain more underwater black gold. Oil-eating bacteria will be used to detect oil that cannot be recovered by other methods and make the route out of reservoirs smoother. The method is called ‘Microbial Improved Oil Recovery’ shortened to MIOR.

Researchers at Norwegian University of Science and Technology (NTNU) have made comprehensive studies of the MIOR method and have tested the effect of different varieties on the level of oil recovery.

- The winner of the tests is the Non-Surfactant Producing Bacteria, says Research Fellow Christian Crescente. It increased oil recovery by 4.2 per cent. The most important kind of testing is still to discover how these mechanisms can lead to an increase in oil recovery using bacteria.

If we understand what is happening, we can make plans and have fewer surprises when we start using bacteria in real reservoirs. We have to remember that surprises are expensive in the oil business. On the other hand one per cent higher oil recovery from Norwegian operative oil fields represents an estimated gross value of 300 billion Norwegian kroner.

Changing the drainage

The process of recovering oil requires a lot more than a long straw down to the bottom of the sea. The oil deposits are in porous rock. When the reservoir is initially breached, the oil will come out almost by itself, just like puncturing a balloon filled with water. As pressure in the reservoirs falls, the oil has to be assisted usually by water that is being pumped into the reservoir.

- Just as rivers find their way through the landscape, water will find its way through the reservoir. This means that oil that is beyond the well drainage will not surface from the reservoir, says Christian Crescente.

This is where the bacteria appear.
- We imagine that will they change the reservoir drainage and find their way to oil that was unrecoverable before, says the scientist.

Making drops slippery

This is only one of the effects oil-eating bacteria may have. Even though we normally think of oil in large barrels, it originally consists of numerous tiny drops in water-filled rock. The drops are so tiny that it is difficult to rinse them out with water.

- The tension in the surface of the oil drops causes them to be caught up in the pores of the rock like a blown-up balloon in a net, explains Christian Crescente, at the Department of Petroleum Engineering and Applied Geophysics, NTNU.

– But, when the bacteria eat some of the surface of the oil drops and this makes them more buoyant, just like soaping a balloon so that it could slip through the net mesh.

Bacteria also change the pore wall of the reservoir, and this makes it easier for the oil to flow through. In addition gases are created, which cause increased pressure in the reservoir, and this again makes it easier for the oil surface.

- A chain of chemical reactions occurs, which contribute to make the reservoir more slippery, explains Christian Crescente. This means that there will be more oil coming up.

Right kind, right method

There are already some types of bacteria in a reservoir, but bacteria can also be inserted and be successfully cultivated. It is important to do research on the specific bacteria that are going to be used in these reservoirs. Oil exists in different kinds of rock which need different kinds of bacteria.

It is all about cultivating the right kind of bacteria and in the right amount. The reservoir functions as its own ecosystem, and if the supply of nutrient is controlled the bacteria will multiply in number and speed.

Many advantages

Compared to other methods of oil recovery MIOR has plenty of advantages. It is cheaper than other methods. It can be used in most kinds of reservoirs. The chemicals that are needed can be made on the spot; in the reservoirs, and chemicals that can be added are cheap and easily available. The method requires minimal extra logistics and is therefore easy to use offshore.

Cheap, but difficult

The method has been in use in many parts of the world, with mixed experience. Lacking both knowledge and planning has barred the good results. Although the method is cheap it is also difficult. Knowledge about how the different types of bacteria function inside the various kinds of rocks that contain oil is the key to obtain a good degree of oil recovery.

- In the Norwegian sector Statoil Hydro has a MIOR project in the Norne fields. Nothing is published about it, so I do not know anything about the results, says Christian Crescente, - but this is an ongoing project, and I assume they have come up with some interesting data.

The goal is 70 per cent

The focus on technology improvements in the Norwegian sector has caused a yearly increase in the percentage of oil recovery. Early in the 1990s one estimated that 35 per cent oil recovery was possible, but it is 46 per cent today. The goal is that the oil recovery rate is to increase even more in the years to get and come close to 70 per cent.

By Hege J. Tunstad/The Reseach Magazine Gemini

Christian Crescente | alfa
Further information:
http://www.ipt.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>