Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bacteria – big money

29.01.2008
Bacteria in oil reservoirs produce give more oil.

They are tiny, and they eat oil. Still, they are the ones that can help us obtain more underwater black gold. Oil-eating bacteria will be used to detect oil that cannot be recovered by other methods and make the route out of reservoirs smoother. The method is called ‘Microbial Improved Oil Recovery’ shortened to MIOR.

Researchers at Norwegian University of Science and Technology (NTNU) have made comprehensive studies of the MIOR method and have tested the effect of different varieties on the level of oil recovery.

- The winner of the tests is the Non-Surfactant Producing Bacteria, says Research Fellow Christian Crescente. It increased oil recovery by 4.2 per cent. The most important kind of testing is still to discover how these mechanisms can lead to an increase in oil recovery using bacteria.

If we understand what is happening, we can make plans and have fewer surprises when we start using bacteria in real reservoirs. We have to remember that surprises are expensive in the oil business. On the other hand one per cent higher oil recovery from Norwegian operative oil fields represents an estimated gross value of 300 billion Norwegian kroner.

Changing the drainage

The process of recovering oil requires a lot more than a long straw down to the bottom of the sea. The oil deposits are in porous rock. When the reservoir is initially breached, the oil will come out almost by itself, just like puncturing a balloon filled with water. As pressure in the reservoirs falls, the oil has to be assisted usually by water that is being pumped into the reservoir.

- Just as rivers find their way through the landscape, water will find its way through the reservoir. This means that oil that is beyond the well drainage will not surface from the reservoir, says Christian Crescente.

This is where the bacteria appear.
- We imagine that will they change the reservoir drainage and find their way to oil that was unrecoverable before, says the scientist.

Making drops slippery

This is only one of the effects oil-eating bacteria may have. Even though we normally think of oil in large barrels, it originally consists of numerous tiny drops in water-filled rock. The drops are so tiny that it is difficult to rinse them out with water.

- The tension in the surface of the oil drops causes them to be caught up in the pores of the rock like a blown-up balloon in a net, explains Christian Crescente, at the Department of Petroleum Engineering and Applied Geophysics, NTNU.

– But, when the bacteria eat some of the surface of the oil drops and this makes them more buoyant, just like soaping a balloon so that it could slip through the net mesh.

Bacteria also change the pore wall of the reservoir, and this makes it easier for the oil to flow through. In addition gases are created, which cause increased pressure in the reservoir, and this again makes it easier for the oil surface.

- A chain of chemical reactions occurs, which contribute to make the reservoir more slippery, explains Christian Crescente. This means that there will be more oil coming up.

Right kind, right method

There are already some types of bacteria in a reservoir, but bacteria can also be inserted and be successfully cultivated. It is important to do research on the specific bacteria that are going to be used in these reservoirs. Oil exists in different kinds of rock which need different kinds of bacteria.

It is all about cultivating the right kind of bacteria and in the right amount. The reservoir functions as its own ecosystem, and if the supply of nutrient is controlled the bacteria will multiply in number and speed.

Many advantages

Compared to other methods of oil recovery MIOR has plenty of advantages. It is cheaper than other methods. It can be used in most kinds of reservoirs. The chemicals that are needed can be made on the spot; in the reservoirs, and chemicals that can be added are cheap and easily available. The method requires minimal extra logistics and is therefore easy to use offshore.

Cheap, but difficult

The method has been in use in many parts of the world, with mixed experience. Lacking both knowledge and planning has barred the good results. Although the method is cheap it is also difficult. Knowledge about how the different types of bacteria function inside the various kinds of rocks that contain oil is the key to obtain a good degree of oil recovery.

- In the Norwegian sector Statoil Hydro has a MIOR project in the Norne fields. Nothing is published about it, so I do not know anything about the results, says Christian Crescente, - but this is an ongoing project, and I assume they have come up with some interesting data.

The goal is 70 per cent

The focus on technology improvements in the Norwegian sector has caused a yearly increase in the percentage of oil recovery. Early in the 1990s one estimated that 35 per cent oil recovery was possible, but it is 46 per cent today. The goal is that the oil recovery rate is to increase even more in the years to get and come close to 70 per cent.

By Hege J. Tunstad/The Reseach Magazine Gemini

Christian Crescente | alfa
Further information:
http://www.ipt.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>