Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small bacteria – big money

29.01.2008
Bacteria in oil reservoirs produce give more oil.

They are tiny, and they eat oil. Still, they are the ones that can help us obtain more underwater black gold. Oil-eating bacteria will be used to detect oil that cannot be recovered by other methods and make the route out of reservoirs smoother. The method is called ‘Microbial Improved Oil Recovery’ shortened to MIOR.

Researchers at Norwegian University of Science and Technology (NTNU) have made comprehensive studies of the MIOR method and have tested the effect of different varieties on the level of oil recovery.

- The winner of the tests is the Non-Surfactant Producing Bacteria, says Research Fellow Christian Crescente. It increased oil recovery by 4.2 per cent. The most important kind of testing is still to discover how these mechanisms can lead to an increase in oil recovery using bacteria.

If we understand what is happening, we can make plans and have fewer surprises when we start using bacteria in real reservoirs. We have to remember that surprises are expensive in the oil business. On the other hand one per cent higher oil recovery from Norwegian operative oil fields represents an estimated gross value of 300 billion Norwegian kroner.

Changing the drainage

The process of recovering oil requires a lot more than a long straw down to the bottom of the sea. The oil deposits are in porous rock. When the reservoir is initially breached, the oil will come out almost by itself, just like puncturing a balloon filled with water. As pressure in the reservoirs falls, the oil has to be assisted usually by water that is being pumped into the reservoir.

- Just as rivers find their way through the landscape, water will find its way through the reservoir. This means that oil that is beyond the well drainage will not surface from the reservoir, says Christian Crescente.

This is where the bacteria appear.
- We imagine that will they change the reservoir drainage and find their way to oil that was unrecoverable before, says the scientist.

Making drops slippery

This is only one of the effects oil-eating bacteria may have. Even though we normally think of oil in large barrels, it originally consists of numerous tiny drops in water-filled rock. The drops are so tiny that it is difficult to rinse them out with water.

- The tension in the surface of the oil drops causes them to be caught up in the pores of the rock like a blown-up balloon in a net, explains Christian Crescente, at the Department of Petroleum Engineering and Applied Geophysics, NTNU.

– But, when the bacteria eat some of the surface of the oil drops and this makes them more buoyant, just like soaping a balloon so that it could slip through the net mesh.

Bacteria also change the pore wall of the reservoir, and this makes it easier for the oil to flow through. In addition gases are created, which cause increased pressure in the reservoir, and this again makes it easier for the oil surface.

- A chain of chemical reactions occurs, which contribute to make the reservoir more slippery, explains Christian Crescente. This means that there will be more oil coming up.

Right kind, right method

There are already some types of bacteria in a reservoir, but bacteria can also be inserted and be successfully cultivated. It is important to do research on the specific bacteria that are going to be used in these reservoirs. Oil exists in different kinds of rock which need different kinds of bacteria.

It is all about cultivating the right kind of bacteria and in the right amount. The reservoir functions as its own ecosystem, and if the supply of nutrient is controlled the bacteria will multiply in number and speed.

Many advantages

Compared to other methods of oil recovery MIOR has plenty of advantages. It is cheaper than other methods. It can be used in most kinds of reservoirs. The chemicals that are needed can be made on the spot; in the reservoirs, and chemicals that can be added are cheap and easily available. The method requires minimal extra logistics and is therefore easy to use offshore.

Cheap, but difficult

The method has been in use in many parts of the world, with mixed experience. Lacking both knowledge and planning has barred the good results. Although the method is cheap it is also difficult. Knowledge about how the different types of bacteria function inside the various kinds of rocks that contain oil is the key to obtain a good degree of oil recovery.

- In the Norwegian sector Statoil Hydro has a MIOR project in the Norne fields. Nothing is published about it, so I do not know anything about the results, says Christian Crescente, - but this is an ongoing project, and I assume they have come up with some interesting data.

The goal is 70 per cent

The focus on technology improvements in the Norwegian sector has caused a yearly increase in the percentage of oil recovery. Early in the 1990s one estimated that 35 per cent oil recovery was possible, but it is 46 per cent today. The goal is that the oil recovery rate is to increase even more in the years to get and come close to 70 per cent.

By Hege J. Tunstad/The Reseach Magazine Gemini

Christian Crescente | alfa
Further information:
http://www.ipt.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>