Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recovering from a mass extinction

21.01.2008
The full recovery of ecological systems, following the most devastating extinction event of all time, took at least 30 million years, according to new research from the University of Bristol.

About 250 million years ago, at the end of the Permian, a major extinction event killed over 90 per cent of life on earth, including insects, plants, marine animals, amphibians, and reptiles. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. This was the nearest life ever came to being completely wiped out.

Previous work indicates that life bounced back quite quickly, but this was mostly in the form of ‘disaster taxa’ (opportunistic organisms that filled the empty ecospace left behind by the extinction), such as the hardy Lystrosaurus, a barrel-chested herbivorous animal, about the size of a pig.

The most recent research, conducted by Sarda Sahney and Professor Michael Benton at the University of Bristol and published in Proceedings of the Royal Society B this week, indicates that specialised animals forming complex ecosystems, with high biodiversity, complex food webs and a variety of niches, took much longer to recover.

Sahney said: “Our research shows that after a major ecological crisis, recovery takes a very long time. So although we have not yet witnessed anything like the level of the extinction that occurred at the end of the Permian, we should nevertheless bear in mind that ecosystems take a very long time to fully recover.”

Sahney and Benton looked at the recovery of tetrapods – animals with a backbone and four legs, such as amphibians and reptiles – and found that although globally tetrapods appeared to recover quickly, the dramatic restructuring that occurred at the community level was not permanent and communities did not recover numerically or ecologically until about 30 million years later.

Professor Benton explained: “Diversity is most commonly assessed by tallying the number of taxa on a global scale, but these studies are subject to the vagaries of sampling. By examining well-preserved and well-studied faunas, the taxonomic and ecological recovery of communities after the Permian extinction event can be examined more accurately, and the problems of geological bias are largely avoided.”

The Permian extinctions occurred in three waves, the largest being at the boundary between the Permian and Triassic periods, 251 million years ago. This was the most devastating ecological event of all time, thought to be caused by large-scale volcanism in Russia which produced the ‘Siberian Traps’, covering over 200,000 square kilometers (77,000 square miles) in lava.

Sarda Sahney | alfa
Further information:
http://journals.royalsociety.org/content/qq5un1810k7605h5/fulltext.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>