Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomass production – careful planning can bring many benefits

16.01.2008
One way of supplying energy is to grow plant material and burn it. If managed well most of the carbon released by burning the material will be captured by the growing plants, and so have a low impact on overall levels of atmospheric carbon dioxide.

Better still, the growing plants could be used to help solve other environmental problems. In a review of current systems, Göran Berndes from the Department of Energy and Environment at Chalmers University of Technology in Götenborg, Sweden highlights several systems. The review is published in this month’s edition of Biofuels, Bioproducts and Biorefining.

- One set of systems currently running in Sweden grows willow trees and irrigates them with sewage effluent. This helps purify the sewage outflow at the same time as providing fuel.

- Other systems plant willow buffers between arable land and water ways. The willow trees use nitrogen that is being leached off the land, making good use of it instead of letting it simply pollute the rivers and seas.

- A third system that Berndes highlights is the option of growing biomass on areas of wasteland in India. Along with providing fuel, this also stops the land becoming degraded by erosion.

“We can do biofuels right or we can do them wrong. If we develop them correctly, we can achieve great environmental, economic and social benefits. It is our responsibility to look forward and shape the emerging biofuels industry so that it actually provides these benefits,” says journal editor Bruce E. Dale, Ph. D., Distinguished Professor of Chemical Engineering, Michigan State University. “With Biofuels, Bioproducts and Biorefining we intend to shed light on the pathways by which biofuels and bioproducts can realise their enormous potential for good.”

This edition of the journal also contains papers that review:

- Ways of pretreating cellulose containing materials so that they are more capable of releasing the energy they store.

- The different chemicals found in biomass. Cellulose, hemicellulose and lignin molecules contained in biomass will greatly improve the way that these resources can be exploited in commercial scale operations.

- The use of biomass for creating many different chemicals. At the moment oil is the source of chemicals that go into substances from paints to pharmaceuticals. Biomass could provide these, either by deliberately creating them, or by harvesting by-products of fermentation processes such as biofuel production. But to be ready for a biomass driven future we need start planning appropriate biorefineries today.

A Comment - The view from the USA

In a Comment article, US Department of Agriculture employee Wally Wilhelm explains the USDA’s view point on biomass use, and argues that US policy will need to facilitate collaboration between different disciplines in order to stimulate this next generation of technology.

These reviews are all featured in Issue 1 of the 2nd Volume of Biofuels, Bioproducts and Biorefining and all content will be freely available online via Wiley Interscience.

The free access web portal www.biofpr.com which supplements the journal, has recently been updated and contains new content including the latest product news and features, patent intelligence, and community pages.

Jennifer Beal | alfa
Further information:
http://www.biofpr.com

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>