Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting pollution the poplar way: Trees to clean up Indiana site

14.01.2008
Purdue University researchers are collaborating with Chrysler LLC in a project to use poplar trees to eliminate pollutants from a contaminated site in north-central Indiana.

The researchers plan to plant transgenic poplars at the site, a former oil storage facility near Kokomo, Ind., this summer. In a laboratory setting, the transgenic trees have been shown to be capable of absorbing trichloroethylene, or TCE, and other pollutants before processing them into harmless byproducts.

Richard Meilan, a Purdue associate professor, is currently at work to transform one variety of poplar suited to Indiana's climate; cold-hardy poplars are generally more difficult to alter than the variety used in a laboratory setting.

"This site presents the perfect opportunity to prove that poplars can get rid of pollution in the real world," Meilan said.

In a study Meilan co-authored, published last October in Proceedings of the National Academy of Sciences, poplar cuttings removed 90 percent of the TCE within a hydroponic solution in one week. The engineered trees also took up and metabolized the chemical 100 times faster than unaltered hybrid poplars, which have a limited ability to remove and degrade the contaminant on their own, he said.

The transgenic poplars contain an inserted gene that encodes an enzyme capable of breaking down TCE and a variety of other environmental pollutants, including chloroform, benzene, vinyl chloride and carbon tetrachloride.

Meilan said he believes the transgenic poplars will be able to remove the TCE from the site, named Peter's Pond, which was contaminated by tainted oil stored there in the 1960s. The chemical, used as an industrial solvent and degreaser, lies within 10 feet of the surface, making it accessible to poplar roots, he said.

TCE, the most common groundwater pollutant on Superfund sites, is a probable human carcinogen and causes various health problems when present in sufficiently high levels in water or air.

Meilan said planting transgenic trees in the field remains controversial, primarily due to concerns that inserted genes, or transgenes, might escape and incorporate into natural tree populations.

"It is legitimate to be concerned about transgenic plants, but we are taking comprehensive steps to ensure that our transgenes don't escape into the environment," Meilan said.

Meilan has applied for a permit to grow transgenic poplars in a field, or non-laboratory, setting from the Animal and Plant Health Inspection Service, the government organization responsible for regulating such research activities, he said.

In order to comply with permit guidelines and to protect the environment, Meilan's team will take measures to prevent any plant material from leaving the site and will remove the trees after three years, short of the five it takes for poplars to reach sexual maturity, he said.

"Three years should be enough time for them to grow up, send down roots to suck the pollutants up and break them down," Meilan said. "Then we'll cut them down before they have the chance to pass on their genes to the environment."

Besides their utility in phytoremediation, or pollution removal, poplars have promise as a feedstock for cellulosic ethanol. To investigate their potential in this area, the U.S. Department of Energy awarded a $1.3 million grant to Meilan and two colleagues, professors Michael Ladisch, agricultural and biological engineering, and lead researcher Clint Chapple, biochemistry.

They are currently investigating ways to alter the composition of poplar lignin, which provides rigidity to the plant cell wall by binding to strands of cellulose, a complex sugar that can be converted into ethanol.

Chrysler will fund the Kokomo project and said that the TCE is contained within an isolated water table at Peter's Pond and presents no public hazard.

The original study, led by University of Washington professors Stuart Strand and Sharon Doty, revealed that the transgenic poplars also were able to absorb TCE vapors through their leaves before metabolizing the chemical. Tree cuttings removed 79 percent of the airborne TCE from a chamber within one week. This suggests poplars could one day help mitigate air as well as water pollution.

If the project succeeds, poplars may be used for phytoremediation elsewhere. Poplars grow across a wide geographic range and in many different climates, Meilan said.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source: Richard Meilan, (765) 496-2287, rmeilan@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>