Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting pollution the poplar way: Trees to clean up Indiana site

14.01.2008
Purdue University researchers are collaborating with Chrysler LLC in a project to use poplar trees to eliminate pollutants from a contaminated site in north-central Indiana.

The researchers plan to plant transgenic poplars at the site, a former oil storage facility near Kokomo, Ind., this summer. In a laboratory setting, the transgenic trees have been shown to be capable of absorbing trichloroethylene, or TCE, and other pollutants before processing them into harmless byproducts.

Richard Meilan, a Purdue associate professor, is currently at work to transform one variety of poplar suited to Indiana's climate; cold-hardy poplars are generally more difficult to alter than the variety used in a laboratory setting.

"This site presents the perfect opportunity to prove that poplars can get rid of pollution in the real world," Meilan said.

In a study Meilan co-authored, published last October in Proceedings of the National Academy of Sciences, poplar cuttings removed 90 percent of the TCE within a hydroponic solution in one week. The engineered trees also took up and metabolized the chemical 100 times faster than unaltered hybrid poplars, which have a limited ability to remove and degrade the contaminant on their own, he said.

The transgenic poplars contain an inserted gene that encodes an enzyme capable of breaking down TCE and a variety of other environmental pollutants, including chloroform, benzene, vinyl chloride and carbon tetrachloride.

Meilan said he believes the transgenic poplars will be able to remove the TCE from the site, named Peter's Pond, which was contaminated by tainted oil stored there in the 1960s. The chemical, used as an industrial solvent and degreaser, lies within 10 feet of the surface, making it accessible to poplar roots, he said.

TCE, the most common groundwater pollutant on Superfund sites, is a probable human carcinogen and causes various health problems when present in sufficiently high levels in water or air.

Meilan said planting transgenic trees in the field remains controversial, primarily due to concerns that inserted genes, or transgenes, might escape and incorporate into natural tree populations.

"It is legitimate to be concerned about transgenic plants, but we are taking comprehensive steps to ensure that our transgenes don't escape into the environment," Meilan said.

Meilan has applied for a permit to grow transgenic poplars in a field, or non-laboratory, setting from the Animal and Plant Health Inspection Service, the government organization responsible for regulating such research activities, he said.

In order to comply with permit guidelines and to protect the environment, Meilan's team will take measures to prevent any plant material from leaving the site and will remove the trees after three years, short of the five it takes for poplars to reach sexual maturity, he said.

"Three years should be enough time for them to grow up, send down roots to suck the pollutants up and break them down," Meilan said. "Then we'll cut them down before they have the chance to pass on their genes to the environment."

Besides their utility in phytoremediation, or pollution removal, poplars have promise as a feedstock for cellulosic ethanol. To investigate their potential in this area, the U.S. Department of Energy awarded a $1.3 million grant to Meilan and two colleagues, professors Michael Ladisch, agricultural and biological engineering, and lead researcher Clint Chapple, biochemistry.

They are currently investigating ways to alter the composition of poplar lignin, which provides rigidity to the plant cell wall by binding to strands of cellulose, a complex sugar that can be converted into ethanol.

Chrysler will fund the Kokomo project and said that the TCE is contained within an isolated water table at Peter's Pond and presents no public hazard.

The original study, led by University of Washington professors Stuart Strand and Sharon Doty, revealed that the transgenic poplars also were able to absorb TCE vapors through their leaves before metabolizing the chemical. Tree cuttings removed 79 percent of the airborne TCE from a chamber within one week. This suggests poplars could one day help mitigate air as well as water pollution.

If the project succeeds, poplars may be used for phytoremediation elsewhere. Poplars grow across a wide geographic range and in many different climates, Meilan said.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source: Richard Meilan, (765) 496-2287, rmeilan@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>