Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa's biggest mammals key to ant-plant teamwork

11.01.2008
Throughout the tropics, ants and Acacia trees live together in intricate interdependent relationships that have long fascinated scientists.

Now researchers are reporting that in Africa, this plant-insect teamwork depends on the very antagonist it is intended to ward off: Africa’s big browsing mammals.

In a paper set to appear this week on the cover of the journal Science, the researchers report that elephants, giraffes and other large plant-eaters spur Acacias to “hire” and support ants as bodyguards – and without the mammals, the trees slash their investment in ants, opening both to other attackers. Because many of the mammals are threatened by human activities, the paper’s conclusions serve as a cautionary tale of how people can influence the ecosystem as their impacts cascade down unexpected paths.

“Throughout sub-Saharan Africa these large mammals are threatened by human population growth, habitat fragmentation, over-hunting, and other degradation, so we have to wonder how their loss will affect these ecosystems,” said Todd Palmer, the paper’s lead author and an assistant professor of zoology at the University of Florida. “The last thing you would think is that individual trees would start to suffer as well, and yet that’s exactly what we see.”

Scientists have observed mutualism, or cooperative interactions between different species, throughout the natural world. The phenomenon is also well-known among plants and insects, with some of the earliest observations surrounding ants and plants in Central America.

What sets the Science paper apart is that it shows how easily these relationships, which likely have evolved over many millennia, can fall apart once a critical cog is removed.

Acacias are mostly shrubby trees common across the tropics and sub-Saharan African savannah. They have swollen thorns that serve as nests for three species of biting ants. Healthy trees have hundreds of the thorns, often containing more than 100,000 ants per tree. Both the ants and the trees benefit from their close cohabitation. The ants get the thorny shelters, as well as nectar they collect from the bases of Acacia leaves. Because the ants swarm in defense against anything that molests the trees, the trees get protection from their chief ostensible nemeses, browsing animals.

That’s when the mutualism is working well. But the research got its start when Palmer noticed that certain Acacias at his research site in central Kenya, which had been fenced off from wild herbivores, looked sickly compared with their unfenced counterparts. That was the opposite of what might be expected, because the browsers feed voraciously on the trees.

Palmer noticed that the sickly trees appeared to have fewer thorn nests, so he began measuring that and other differences on the trees in six experimentally fenced plots and six open plots. The former had been surrounded by an 8,000-volt electric fence for 10 years.

The observations confirmed the fenced trees had fewer swollen thorns. The research also revealed that the fenced trees had fewer active “nectaries” at the base of leaves where the ants sip the trees’ nectar. That indicated the trees were producing less nectar.

Moreover, when Palmer and other researchers jostled the fenced trees, the ants were far less defensive than their counterparts on the unfenced trees. There, the slightest disturbance spurs hundreds of ants to pour out of the thorns.

Without mammals around to eat the trees, sheltering fewer, less aggressive ants would not present a cost to the trees. To the contrary, the trees would seem to be better off, because they would not need to use their resources to support the ants.

But the research revealed that the fewer colonies of weakened ants become less able to defend their territory from another species of ant that, unlike the others, does not have a mutually beneficial relationship with Acacias. Instead, this fourth ant species feeds away from the tree and does not protect it from attackers – in fact, it actually encourages a destructive, wood-boring beetle whose cavities then serve as this ant’s home.

The result appears to be that the trees untouched by browsing mammals are infested with more of the beetles, which is part of the reason that they fare poorly.

Another problem for the fenced trees may be that their ants appeared to gather nectar-like secretions from more aphid-like insects than those on the unfenced trees. This could also serve to weaken the fenced trees, Palmer said. The fenced trees were twice as likely to die as the unfenced ones, and they grew 65 percent more slowly, the paper reports.

“You get a community-wide replacement of ‘good ants’ with ‘bad ants,’ and the result is that the trees start doing poorly,” Palmer said.

One irony of the findings is that the trees have developed their mutualistic relationship with the ants to protect themselves against plant-eating mammals – and yet because of that relationship, the trees wind up actually needing the mammals.

“If you get rid of the large mammals, it shifts the balance of power, because the trees default on their end of the bargain,” Palmer said. “When the trees opt out, their hard-working employees starve and grow weak, which causes them to lose out. So, ironically, getting rid of the mammals causes individual trees to grow more slowly and die younger.”

The research has important implications for conservation.

As Palmer said, “It’s becoming increasingly clear that anthropogenic change can have rapid and unanticipated consequences for cooperative species interactions, and we caught this happening in real time.”

Todd Palmer | EurekAlert!
Further information:
http://www.zoo.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>