Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa's biggest mammals key to ant-plant teamwork

11.01.2008
Throughout the tropics, ants and Acacia trees live together in intricate interdependent relationships that have long fascinated scientists.

Now researchers are reporting that in Africa, this plant-insect teamwork depends on the very antagonist it is intended to ward off: Africa’s big browsing mammals.

In a paper set to appear this week on the cover of the journal Science, the researchers report that elephants, giraffes and other large plant-eaters spur Acacias to “hire” and support ants as bodyguards – and without the mammals, the trees slash their investment in ants, opening both to other attackers. Because many of the mammals are threatened by human activities, the paper’s conclusions serve as a cautionary tale of how people can influence the ecosystem as their impacts cascade down unexpected paths.

“Throughout sub-Saharan Africa these large mammals are threatened by human population growth, habitat fragmentation, over-hunting, and other degradation, so we have to wonder how their loss will affect these ecosystems,” said Todd Palmer, the paper’s lead author and an assistant professor of zoology at the University of Florida. “The last thing you would think is that individual trees would start to suffer as well, and yet that’s exactly what we see.”

Scientists have observed mutualism, or cooperative interactions between different species, throughout the natural world. The phenomenon is also well-known among plants and insects, with some of the earliest observations surrounding ants and plants in Central America.

What sets the Science paper apart is that it shows how easily these relationships, which likely have evolved over many millennia, can fall apart once a critical cog is removed.

Acacias are mostly shrubby trees common across the tropics and sub-Saharan African savannah. They have swollen thorns that serve as nests for three species of biting ants. Healthy trees have hundreds of the thorns, often containing more than 100,000 ants per tree. Both the ants and the trees benefit from their close cohabitation. The ants get the thorny shelters, as well as nectar they collect from the bases of Acacia leaves. Because the ants swarm in defense against anything that molests the trees, the trees get protection from their chief ostensible nemeses, browsing animals.

That’s when the mutualism is working well. But the research got its start when Palmer noticed that certain Acacias at his research site in central Kenya, which had been fenced off from wild herbivores, looked sickly compared with their unfenced counterparts. That was the opposite of what might be expected, because the browsers feed voraciously on the trees.

Palmer noticed that the sickly trees appeared to have fewer thorn nests, so he began measuring that and other differences on the trees in six experimentally fenced plots and six open plots. The former had been surrounded by an 8,000-volt electric fence for 10 years.

The observations confirmed the fenced trees had fewer swollen thorns. The research also revealed that the fenced trees had fewer active “nectaries” at the base of leaves where the ants sip the trees’ nectar. That indicated the trees were producing less nectar.

Moreover, when Palmer and other researchers jostled the fenced trees, the ants were far less defensive than their counterparts on the unfenced trees. There, the slightest disturbance spurs hundreds of ants to pour out of the thorns.

Without mammals around to eat the trees, sheltering fewer, less aggressive ants would not present a cost to the trees. To the contrary, the trees would seem to be better off, because they would not need to use their resources to support the ants.

But the research revealed that the fewer colonies of weakened ants become less able to defend their territory from another species of ant that, unlike the others, does not have a mutually beneficial relationship with Acacias. Instead, this fourth ant species feeds away from the tree and does not protect it from attackers – in fact, it actually encourages a destructive, wood-boring beetle whose cavities then serve as this ant’s home.

The result appears to be that the trees untouched by browsing mammals are infested with more of the beetles, which is part of the reason that they fare poorly.

Another problem for the fenced trees may be that their ants appeared to gather nectar-like secretions from more aphid-like insects than those on the unfenced trees. This could also serve to weaken the fenced trees, Palmer said. The fenced trees were twice as likely to die as the unfenced ones, and they grew 65 percent more slowly, the paper reports.

“You get a community-wide replacement of ‘good ants’ with ‘bad ants,’ and the result is that the trees start doing poorly,” Palmer said.

One irony of the findings is that the trees have developed their mutualistic relationship with the ants to protect themselves against plant-eating mammals – and yet because of that relationship, the trees wind up actually needing the mammals.

“If you get rid of the large mammals, it shifts the balance of power, because the trees default on their end of the bargain,” Palmer said. “When the trees opt out, their hard-working employees starve and grow weak, which causes them to lose out. So, ironically, getting rid of the mammals causes individual trees to grow more slowly and die younger.”

The research has important implications for conservation.

As Palmer said, “It’s becoming increasingly clear that anthropogenic change can have rapid and unanticipated consequences for cooperative species interactions, and we caught this happening in real time.”

Todd Palmer | EurekAlert!
Further information:
http://www.zoo.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>