Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overgrazing accelerating soil erosion in northern Mexico

08.01.2008
Every year in the world an estimated 20 million hectares of arable land are rendered infertile simply owing to water-induced erosion. It is therefore crucial to understand how these processes arise in order better to protect the layer of a few tens of metres of fertile soil essential for plant growth and therefore for sustaining agriculture. In the North of Mexico, about ten years ago IRD teams studied the erosion phenomenon which affects this region where pastoral activities and tree felling aggravate the process.

As part of field studies conducted from 1993 to 2000 on the mountain crests of the western Sierra Madre and in the more arid regions in the south of the Chihuahua Desert, the scientific team established a soil classification according to climatic and topographic characteristics. They used a rainfall index type hydrological model which gives real-time simulation of the humidity state of soil on the basis of a range of parameters including soil humidity, runoff rate, water storage capacity.

This measurement method also takes into account the volume of rain collected at a given moment and the time lapsed since it fell. This model, named NAZASM, with reference to the Rio Nazas drainage basin where it was first used in 1999, provides a means of classifying each soil type according to the processes that allow infiltration of water but also its runoff on the surface. From pine and oak forests of the Sierra’s mountains, to the bare expanses of the Chihuahua Desert located at 1000 m altitude, the rainfall was determined, varying locally from 1000 mm to less than 200 mm. The NAZASM model led to the assessment that only the drainage basins of the sub-humid zone of the western Sierra Madre had the capacity to let the rainwater pass through the soil before part of it could flow into water courses.

The soil degradation associated with overgrazing could substantially reduce this storage capacity. In the other, arid or semi-arid type terrains studied, the soil infiltration capacity was most often lower than the rainfall rate. That is translated by the formation of runoff on the soil surface and this accentuates the process of water erosion.

Other more local-scale results presented by the same team showed that surface-type erosion, or sheet erosion, which applies to all the surface considered, was the cause of almost all the soil losses affecting the western Sierra Madre. The proportion of fertile land lost by flooding-induced gully erosion was estimated at 2% of total erosion, even though a large amount of the material dragged down from the mountain slopes themselves were in fact transported through the gullies so formed. These original measurements suggest that, in this northern area of Mexico, it is the soils of all the drainage slopes that lose several millimetres every year. In this part of the country, with its steep slopes, this process was found to be the consequence of livestock’s trampling of vegetation combined with the sheer intensity of rainfall events. The intense grazing pressure exerted by cattle, which eat mainly grassy and herbaceous plants, means that the unpalatable species that the livestock leave alone no longer have any competition and eventually take over the whole of the space. This overgrazing therefore causes the grassland ecosystem to be replaced by thorn scrub and pine, less effective for holding in place the fine layer of fertile soil.

In the space of around ten years, pressure from ever-growing herds and tree-felling for timber have contributed greatly to changes in the landscape. In the western Sierra Madre, practically all the pasture land located at 500 to 2500 m altitude are already degraded. Yet paradoxically it was in the valley bottoms where there was least rainfall that sheet erosion was most intense. These zones were also the site of the most degraded pastures and where runoff was strongest.

These observations provide scientists with a better understanding of the functioning of soil and the erosion processes in regions like northern Mexico where it is becoming especially intense. This type of approach offers a better way of assessing soil degradation. It should in the long term offer easier identification of the places most vulnerable to erosion and runoff, a capability useful for devising control measures to limit certain detrimental practices such as tree clearance or over-intense grazing practices.

Grégory Fléchet - DIC

(1) These research studies were conducted jointly with the Mexican institutions: CENID RASPA (Centro Nacional de Investigación Disciplinaria en la Relación Agua Suelo Planta Atmósfera, and the research centre of INIFAP (Instituto Nacional de Investigación Forestal y Agro-Pecuaria) in Gomez Palacio (Durango State)

(2)In geology, a soil corresponds to the layer of fertile earth resulting from weathering of a surface rock under the influence of climate, vegetation or living organisms.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2007/fas281.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>