Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea species' loss could lead to oceans' collapse

03.01.2008
The loss of deep-sea species poses a severe threat to the future of the oceans, suggests a new report publishing early online on December 27th and in the January 8th issue of Current Biology, a publication of Cell Press.

In a global-scale study, the researchers found some of the first evidence that the health of the deep sea, as measured by the rate of critical ecosystem processes, increases exponentially with the diversity of species living there.

“For the first time, we have demonstrated that deep-sea ecosystem functioning is closely dependent upon the number of species inhabiting the ocean floor,” said Roberto Danovaro of the Polytechnic University of Marche, in Italy. “This shows that we need to preserve biodiversity, and especially deep-sea biodiversity, because otherwise the negative consequences could be unprecedented. We must care about species that are far from us and [essentially] invisible.”

Ecosystem functioning involves several processes, which can be summarized as the production, consumption, and transfer of organic matter to higher levels of the food chain, the decomposition of organic matter, and the regeneration of nutrients, he explained.

Recent investigations on land have suggested that biodiversity loss might impair the functioning and sustainability of ecosystems, Danovaro said. However, the data needed to evaluate the consequences of biodiversity loss on the ocean floor had been completely lacking, despite the fact that the deep sea covers 65% of the Earth and is “by far the most important ecosystem for the cycling of carbon, nitrogen, and phosphorus of the biosphere.” The deep sea also supports the largest “biomass” of living things, including a large proportion of undiscovered species.

In the new study, Danovaro’s team examined the biodiversity of nematode worms and several independent indicators of ecosystem functioning and efficiency at 116 deep-sea sites. Nematodes are the most abundant animals on earth and account for more than 90% of all life at the bottom of the sea. Earlier studies have also suggested that nematode diversity is a good proxy for the diversity of other deep-sea species.

They found that sites with a higher diversity of nematodes support exponentially higher rates of ecosystem processes and an increased efficiency with which those processes are performed. Efficiency reflects the ability of an ecosystem to exploit the available energy in the form of food sources, the researchers said. Overall, they added, “our results suggest that a higher biodiversity can enhance the ability of deep-sea benthic systems to perform the key biological and biogeochemical processes that are crucial for their sustainable functioning.”

The sharp increase in ecosystem functioning as species numbers rise further suggests that individual species in the deep sea make way for more species or facilitate one another, Danovaro said. That’s in contrast to terrestrial-system findings, which have generally shown a linear relationship between diversity and ecosystem functioning, he noted, suggesting complementary relationships among species.

“Deep-sea ecosystems provide goods (including biomass, bioactive molecules, oil, gas, and minerals) and services (climate regulation, nutrient regeneration and supply to the [upper ocean], and food) and, for their profound involvement in global biogeochemical and ecological processes, are essential for the sustainable functioning of our biosphere and for human wellbeing,” the researchers concluded. “Our results suggest that the conservation of deep-sea biodiversity can be crucial for the sustainability of the functions of the largest ecosystem” on the planet.

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>