Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea species' loss could lead to oceans' collapse

03.01.2008
The loss of deep-sea species poses a severe threat to the future of the oceans, suggests a new report publishing early online on December 27th and in the January 8th issue of Current Biology, a publication of Cell Press.

In a global-scale study, the researchers found some of the first evidence that the health of the deep sea, as measured by the rate of critical ecosystem processes, increases exponentially with the diversity of species living there.

“For the first time, we have demonstrated that deep-sea ecosystem functioning is closely dependent upon the number of species inhabiting the ocean floor,” said Roberto Danovaro of the Polytechnic University of Marche, in Italy. “This shows that we need to preserve biodiversity, and especially deep-sea biodiversity, because otherwise the negative consequences could be unprecedented. We must care about species that are far from us and [essentially] invisible.”

Ecosystem functioning involves several processes, which can be summarized as the production, consumption, and transfer of organic matter to higher levels of the food chain, the decomposition of organic matter, and the regeneration of nutrients, he explained.

Recent investigations on land have suggested that biodiversity loss might impair the functioning and sustainability of ecosystems, Danovaro said. However, the data needed to evaluate the consequences of biodiversity loss on the ocean floor had been completely lacking, despite the fact that the deep sea covers 65% of the Earth and is “by far the most important ecosystem for the cycling of carbon, nitrogen, and phosphorus of the biosphere.” The deep sea also supports the largest “biomass” of living things, including a large proportion of undiscovered species.

In the new study, Danovaro’s team examined the biodiversity of nematode worms and several independent indicators of ecosystem functioning and efficiency at 116 deep-sea sites. Nematodes are the most abundant animals on earth and account for more than 90% of all life at the bottom of the sea. Earlier studies have also suggested that nematode diversity is a good proxy for the diversity of other deep-sea species.

They found that sites with a higher diversity of nematodes support exponentially higher rates of ecosystem processes and an increased efficiency with which those processes are performed. Efficiency reflects the ability of an ecosystem to exploit the available energy in the form of food sources, the researchers said. Overall, they added, “our results suggest that a higher biodiversity can enhance the ability of deep-sea benthic systems to perform the key biological and biogeochemical processes that are crucial for their sustainable functioning.”

The sharp increase in ecosystem functioning as species numbers rise further suggests that individual species in the deep sea make way for more species or facilitate one another, Danovaro said. That’s in contrast to terrestrial-system findings, which have generally shown a linear relationship between diversity and ecosystem functioning, he noted, suggesting complementary relationships among species.

“Deep-sea ecosystems provide goods (including biomass, bioactive molecules, oil, gas, and minerals) and services (climate regulation, nutrient regeneration and supply to the [upper ocean], and food) and, for their profound involvement in global biogeochemical and ecological processes, are essential for the sustainable functioning of our biosphere and for human wellbeing,” the researchers concluded. “Our results suggest that the conservation of deep-sea biodiversity can be crucial for the sustainability of the functions of the largest ecosystem” on the planet.

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>