Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sink capacity in northern forests reduced by global warming

03.01.2008
Loosing more than we gain from Autumn warming in the north

An international study investigating the carbon sink capacity of northern terrestrial ecosystems discovered that the duration of the net carbon uptake period (CUP) has on average decreased due to warmer autumn temperatures.

Net carbon uptake of northern ecosystems is decreasing in response to autumnal warming according to findings recently published January 3rd, in the journal Nature. The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring. Over the past two decades autumn temperatures in northern latitudes have risen by about 1.1 °C with spring temperatures up by 0.8 °C.

Many northern terrestrial ecosystems currently lose carbon dioxide (CO2) in response to autumn warming, offsetting 90% of the increased carbon dioxide uptake during spring. Using computer modeling to integrate forest canopy measurements and remote satellite data, researchers found that while warm spring temperatures accelerate growth more than soil decomposition and enhance carbon uptake, autumn warming greatly increases soil decomposition and significantly reduces carbon uptake.

Lead author of the study, Dr. Shilong Piao from the LSCE, UMR CEA-CNRS,in France says “If warming in autumn occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon will diminish in the future”.

Philippe Ciais, also a member of the research team and a scientist from the Global Carbon Project says “The potentially rapid decline in the future ability of northern terrestrial ecosystems to remove atmospheric carbon dioxide would make stabilization of atmospheric CO2 concentrations much harder than currently predicted”.

This study was supported by European Community-funded projects ENSEMBLES and CARBOEUROPE IP, and by the National Natural Science Foundation of China as well as by Fluxnet-Canada, which was supported by CFCAS, NSERC, BIOCAP, MSC and NRCan.

“Net carbon dioxide losses of northern ecosystems in response to autumn warming”
Shilong Piao1, Philippe Ciais1, Pierre Friedlingstein1, Philippe Peylin2, Markus Reichstein3, Sebastiaan Luyssaert4, Hank Margolis5, Jingyun Fang6, Alan Barr7, Anping Chen8, Achim Grelle9, David Hollinger10, Tuomas Laurila11, Anders Lindroth12, Andrew D. Richardson13 & Timo Vesala14

1LSCE, UMR CEA-CNRS, Bâtiment 709, CE, L’Orme des Merisiers, F-91191 Gif-sur-Yvette, France. 2Laboratoire de Biogéochimie Isotopique, LBI, Bâtiment EGER, F-78026 Thiverval-Grignon, France. 3Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany. 4Department of Biology, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium. 5Faculté de foresterie et de géomatique, Université Laval, Sainte-Foy, Quebec G1K 7P4, Canada. 6Department of Ecology, Peking University, Beijing 100871, China. 7Climate Research Division, Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada. 8Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. 9Department of Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden. 10USDA Forest Service Northern Research Station, 271 Mast Road, Durham, New Hampshire 03824, USA. 11Finnish Meteorological Institute, FIN-00101 Helsinki, Finland. 12Department of Physical Geography and Ecosystems Analysis, Lund University, SE-22362 Lund, Sweden. 13Complex Systems Research Center, University of New Hampshire, Durham, New Hampshire 03824, USA. 14Department of Physics, University of Helsinki, FIN-00014 Helsinki, Finland.

Dr Phillip Ciais | alfa
Further information:
http://www.nature.com/nature
http://www.globalcarbonproject.org/news/AutumnWarming.htm

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>