Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Elevated Carbon Dioxide Changes Soil Microbe Mix Below Plants

A detailed analysis of soil samples taken from a forest ecosystem with artificially elevated levels of atmospheric carbon dioxide (CO2) reveals distinct changes in the mix of microorganisms living in the soil below trembling aspen.

These changes could increase the availability of essential soil nutrients, thereby supporting increased plant growth and the plants' ability to "lock up," or sequester, excess carbon from the atmosphere. The research will be published online this week in the journal Environmental Microbiology.

Among the studys authors are Niels van der Lelie, Safiyh Taghavi, and Sean McCorkle of the Brookhaven Biology Department. The image behind them shows the distribution of microbial species at ambient and elevated levels of CO2.

"These changes in soil biota are evidence for altered interactions between trembling aspen trees and the microorganisms in the surrounding soil," says Daniel (Niels) van der Lelie, a biologist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, who led the research. "This supports the idea that greater plant detritus production under elevated CO2 has altered microbial community composition in the soil. Understanding the effect these microbial changes have on ecosystem function, especially via effects on the cycling of essential elements, will be important for evaluating the potential of forests to act as a natural carbon sink in mitigating the effects of rising CO2."

Atmospheric CO2, the most abundant "greenhouse gas," has been increasing since the start of the industrial age, and is one of the main contributing factors associated with climate change. Since plants take in CO2 and convert it to biomass during photosynthesis, much research has focused on the potential of forests to sequester excess carbon and offset the rise in CO2.

Various studies have demonstrated increased plant growth under elevated CO2, but there is no consensus on many of the secondary effects associated with these plant responses. The goal of this study was to investigate the composition and role of microbial communities, which help to regulate the cycling of carbon and nitrogen in terrestrial ecosystems.

The study was conducted on soil samples collected at an experimental trembling aspen forest in Rhinelander, Wisconsin. That forest is outfitted with a series rings made of large pipes that can pump a controlled amount of carbon dioxide (or other gases) into the air to artificially mimic expected environmental changes in an otherwise open-air environment. This and other similar "free-air carbon dioxide enrichment" (FACE) facilities around the world were developed by the Department of Energy to help estimate how plants and ecosystems will respond to increasing CO2. Before FACE, much of what scientists knew about plant and ecosystem responses to rising CO2 came from studies conducted in enclosures, where the response of plants is modified by their growth conditions.

In this study, the scientists compared the microbial content of soil taken from three FACE rings receiving ambient levels of CO2 (about 383 parts per million, as of January 2007) with that from soil taken from three FACE rings that have been receiving elevated CO2 (560 parts per million) - a level expected to be ambient on Earth in the year 2100 if the current rate of CO2 increase remains constant at 1.9 parts per million per year.

The scientists first isolated the genetic material from each soil sample. They then used molecular genetics techniques to isolate regions of genetic material known to be highly species-specific, sequenced these regions, and compared them with genetic sequence libraries of known bacteria, eukaryotic microbes (those with nuclei, such as fungi and protozoa), and archaea, a group of microbes that are genetically distinct from bacteria and often dwell in extreme environments.

Main findings

There were no differences in total abundance of bacteria or eukaryotic microbes between ambient and high CO2 soil samples. But elevated CO2 samples showed significant changes in the composition of these communities, including:

an increase in heterotrophic decomposers - microbes that rely on an external food source and break down organic matter to recycle carbon and nitrogen

an increase in ectomycorrhizal fungi - which gain nutrients by living in association with plant roots and help to provide the plants with essential minerals

a decrease in fungi that commonly cause disease in plants - perhaps because increased plant growth stimulated by CO2 makes the plants less hospitable/susceptible to the fungi.

a significant decrease in nitrate-reducers of the domain bacteria and archaea potentially implicated in ammonium oxidation.

The increased plant growth associated with elevated CO2 environments has often been observed to be temporary because of the progressive depletion of the element nitrogen from the soil. Such a limitation has not yet been observed at the Rhinelander FACE site.

"Overall, the changes we observed support previously reported increases in biomass turnover rates and sustained availability and translocation of the essential nutrients required for increased plant growth under elevated CO2," van der Lelie said.

This study was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science and by the Laboratory Directed Research and Development program at Brookhaven Lab.

Karen McNulty Walsh | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>