Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elevated Carbon Dioxide Changes Soil Microbe Mix Below Plants

20.12.2007
A detailed analysis of soil samples taken from a forest ecosystem with artificially elevated levels of atmospheric carbon dioxide (CO2) reveals distinct changes in the mix of microorganisms living in the soil below trembling aspen.

These changes could increase the availability of essential soil nutrients, thereby supporting increased plant growth and the plants' ability to "lock up," or sequester, excess carbon from the atmosphere. The research will be published online this week in the journal Environmental Microbiology.

Among the studys authors are Niels van der Lelie, Safiyh Taghavi, and Sean McCorkle of the Brookhaven Biology Department. The image behind them shows the distribution of microbial species at ambient and elevated levels of CO2.

"These changes in soil biota are evidence for altered interactions between trembling aspen trees and the microorganisms in the surrounding soil," says Daniel (Niels) van der Lelie, a biologist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, who led the research. "This supports the idea that greater plant detritus production under elevated CO2 has altered microbial community composition in the soil. Understanding the effect these microbial changes have on ecosystem function, especially via effects on the cycling of essential elements, will be important for evaluating the potential of forests to act as a natural carbon sink in mitigating the effects of rising CO2."

Atmospheric CO2, the most abundant "greenhouse gas," has been increasing since the start of the industrial age, and is one of the main contributing factors associated with climate change. Since plants take in CO2 and convert it to biomass during photosynthesis, much research has focused on the potential of forests to sequester excess carbon and offset the rise in CO2.

Various studies have demonstrated increased plant growth under elevated CO2, but there is no consensus on many of the secondary effects associated with these plant responses. The goal of this study was to investigate the composition and role of microbial communities, which help to regulate the cycling of carbon and nitrogen in terrestrial ecosystems.

The study was conducted on soil samples collected at an experimental trembling aspen forest in Rhinelander, Wisconsin. That forest is outfitted with a series rings made of large pipes that can pump a controlled amount of carbon dioxide (or other gases) into the air to artificially mimic expected environmental changes in an otherwise open-air environment. This and other similar "free-air carbon dioxide enrichment" (FACE) facilities around the world were developed by the Department of Energy to help estimate how plants and ecosystems will respond to increasing CO2. Before FACE, much of what scientists knew about plant and ecosystem responses to rising CO2 came from studies conducted in enclosures, where the response of plants is modified by their growth conditions.

In this study, the scientists compared the microbial content of soil taken from three FACE rings receiving ambient levels of CO2 (about 383 parts per million, as of January 2007) with that from soil taken from three FACE rings that have been receiving elevated CO2 (560 parts per million) - a level expected to be ambient on Earth in the year 2100 if the current rate of CO2 increase remains constant at 1.9 parts per million per year.

The scientists first isolated the genetic material from each soil sample. They then used molecular genetics techniques to isolate regions of genetic material known to be highly species-specific, sequenced these regions, and compared them with genetic sequence libraries of known bacteria, eukaryotic microbes (those with nuclei, such as fungi and protozoa), and archaea, a group of microbes that are genetically distinct from bacteria and often dwell in extreme environments.

Main findings

There were no differences in total abundance of bacteria or eukaryotic microbes between ambient and high CO2 soil samples. But elevated CO2 samples showed significant changes in the composition of these communities, including:

an increase in heterotrophic decomposers - microbes that rely on an external food source and break down organic matter to recycle carbon and nitrogen

an increase in ectomycorrhizal fungi - which gain nutrients by living in association with plant roots and help to provide the plants with essential minerals

a decrease in fungi that commonly cause disease in plants - perhaps because increased plant growth stimulated by CO2 makes the plants less hospitable/susceptible to the fungi.

a significant decrease in nitrate-reducers of the domain bacteria and archaea potentially implicated in ammonium oxidation.

The increased plant growth associated with elevated CO2 environments has often been observed to be temporary because of the progressive depletion of the element nitrogen from the soil. Such a limitation has not yet been observed at the Rhinelander FACE site.

"Overall, the changes we observed support previously reported increases in biomass turnover rates and sustained availability and translocation of the essential nutrients required for increased plant growth under elevated CO2," van der Lelie said.

This study was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science and by the Laboratory Directed Research and Development program at Brookhaven Lab.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>