Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers use NASA satellites to improve pollution modeling

19.12.2007
Detecting pollution, like catching criminals, requires evidence and witnesses; but on the scale of countries, continents and oceans, having enough detectors is easier said than done.

A team of air quality modelers, climatologists and air policy specialists at Arizona State University may soon change that. Under a grant from the Environmental Protection Agency, they have developed a new way to close the gaps in the global pollution dragnet by using NASA satellite data to detect precursors to ozone pollution, also known as smog.

The technique, devised with the aid of health specialists from University of California at Berkeley, uses satellite data to improve ASU’s existing computer models of ozone events — filling in the blanks while expanding coverage to much larger areas.

“The satellite data provides information about remote locations,” said Rick Van Schoik, director of ASU’s North American Center for Transborder Studies. “It gives us data from oceans and about events from other countries with less advanced monitoring capabilities, such as Mexico.”

Such information can have vital implications for health, especially in southern Arizona. According to Joe Fernando, a professor in ASU’s department of mechanical and aerospace engineering and the environmental fluid dynamics program, who worked on the project, ozone is a key ingredient in urban smog, which affects even healthy adults and presents a special health risk to small children, the elderly and those with lung ailments. It can cause shortness of breath, chest pains, increased risk of infection, aggravation of asthma and significant decreases in lung function. Some studies have linked ozone exposure with death by stroke, premature death among people with severe asthma, cardiac birth defects and reduced lung-function growth in children.

This new satellite-assisted model could allow researchers to see an ozone plume forming and work with communities to head off health effects in advance.

“Before, if there were precursors of an ozone event, we couldn’t see them — we just got hit by the pollution,” Van Schoik said. “Now, we can watch the event build.”

Improved oceanic coverage could also help with monitoring one of the largest sources of pollution along the coasts: oceanic ships, which are covered only by international treaties and are not regulated by the EPA.

Ozone forms when nitrogen oxides and volatile organic hydrocarbons — byproducts of fossil fuel pollution — react with one another in the presence of sunlight and warm temperatures, resulting in a chain reaction. This chain reaction can mean that large amounts of ozone can bloom from even moderate amounts of nitrogen oxides.

Scientists can detect ozone by detecting the absorption of specific wavelengths of light, but they have had to rely on ground data and radiosondes — atmospheric instrumentation bundles sent up on weather balloons — to surmount the large uncertainties associated with the technique.

“This is the reason comparisons were made between low-level ozone direct measurements with those obtained from satellites,” said Fernando. “The importance is that the satellite data were used to improve model performance — that this work will lead to better model predictions and hence superior forecasting of ozone and improved health warnings.”

The satellites currently provide data every 16 days. Each square, or pixel, of the grid they cover is five by eight kilometers, but Van Schoik said that the resolution would continue to improve.

“NASA has developed tools that are starting to fulfill much of the promise that we hoped for when NASA began engaging in global environmental monitoring,” he said. “With each member of our team adding their own expertise, we are seeing just how powerful that can be.”

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>