Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers use NASA satellites to improve pollution modeling

19.12.2007
Detecting pollution, like catching criminals, requires evidence and witnesses; but on the scale of countries, continents and oceans, having enough detectors is easier said than done.

A team of air quality modelers, climatologists and air policy specialists at Arizona State University may soon change that. Under a grant from the Environmental Protection Agency, they have developed a new way to close the gaps in the global pollution dragnet by using NASA satellite data to detect precursors to ozone pollution, also known as smog.

The technique, devised with the aid of health specialists from University of California at Berkeley, uses satellite data to improve ASU’s existing computer models of ozone events — filling in the blanks while expanding coverage to much larger areas.

“The satellite data provides information about remote locations,” said Rick Van Schoik, director of ASU’s North American Center for Transborder Studies. “It gives us data from oceans and about events from other countries with less advanced monitoring capabilities, such as Mexico.”

Such information can have vital implications for health, especially in southern Arizona. According to Joe Fernando, a professor in ASU’s department of mechanical and aerospace engineering and the environmental fluid dynamics program, who worked on the project, ozone is a key ingredient in urban smog, which affects even healthy adults and presents a special health risk to small children, the elderly and those with lung ailments. It can cause shortness of breath, chest pains, increased risk of infection, aggravation of asthma and significant decreases in lung function. Some studies have linked ozone exposure with death by stroke, premature death among people with severe asthma, cardiac birth defects and reduced lung-function growth in children.

This new satellite-assisted model could allow researchers to see an ozone plume forming and work with communities to head off health effects in advance.

“Before, if there were precursors of an ozone event, we couldn’t see them — we just got hit by the pollution,” Van Schoik said. “Now, we can watch the event build.”

Improved oceanic coverage could also help with monitoring one of the largest sources of pollution along the coasts: oceanic ships, which are covered only by international treaties and are not regulated by the EPA.

Ozone forms when nitrogen oxides and volatile organic hydrocarbons — byproducts of fossil fuel pollution — react with one another in the presence of sunlight and warm temperatures, resulting in a chain reaction. This chain reaction can mean that large amounts of ozone can bloom from even moderate amounts of nitrogen oxides.

Scientists can detect ozone by detecting the absorption of specific wavelengths of light, but they have had to rely on ground data and radiosondes — atmospheric instrumentation bundles sent up on weather balloons — to surmount the large uncertainties associated with the technique.

“This is the reason comparisons were made between low-level ozone direct measurements with those obtained from satellites,” said Fernando. “The importance is that the satellite data were used to improve model performance — that this work will lead to better model predictions and hence superior forecasting of ozone and improved health warnings.”

The satellites currently provide data every 16 days. Each square, or pixel, of the grid they cover is five by eight kilometers, but Van Schoik said that the resolution would continue to improve.

“NASA has developed tools that are starting to fulfill much of the promise that we hoped for when NASA began engaging in global environmental monitoring,” he said. “With each member of our team adding their own expertise, we are seeing just how powerful that can be.”

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>