Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers use NASA satellites to improve pollution modeling

19.12.2007
Detecting pollution, like catching criminals, requires evidence and witnesses; but on the scale of countries, continents and oceans, having enough detectors is easier said than done.

A team of air quality modelers, climatologists and air policy specialists at Arizona State University may soon change that. Under a grant from the Environmental Protection Agency, they have developed a new way to close the gaps in the global pollution dragnet by using NASA satellite data to detect precursors to ozone pollution, also known as smog.

The technique, devised with the aid of health specialists from University of California at Berkeley, uses satellite data to improve ASU’s existing computer models of ozone events — filling in the blanks while expanding coverage to much larger areas.

“The satellite data provides information about remote locations,” said Rick Van Schoik, director of ASU’s North American Center for Transborder Studies. “It gives us data from oceans and about events from other countries with less advanced monitoring capabilities, such as Mexico.”

Such information can have vital implications for health, especially in southern Arizona. According to Joe Fernando, a professor in ASU’s department of mechanical and aerospace engineering and the environmental fluid dynamics program, who worked on the project, ozone is a key ingredient in urban smog, which affects even healthy adults and presents a special health risk to small children, the elderly and those with lung ailments. It can cause shortness of breath, chest pains, increased risk of infection, aggravation of asthma and significant decreases in lung function. Some studies have linked ozone exposure with death by stroke, premature death among people with severe asthma, cardiac birth defects and reduced lung-function growth in children.

This new satellite-assisted model could allow researchers to see an ozone plume forming and work with communities to head off health effects in advance.

“Before, if there were precursors of an ozone event, we couldn’t see them — we just got hit by the pollution,” Van Schoik said. “Now, we can watch the event build.”

Improved oceanic coverage could also help with monitoring one of the largest sources of pollution along the coasts: oceanic ships, which are covered only by international treaties and are not regulated by the EPA.

Ozone forms when nitrogen oxides and volatile organic hydrocarbons — byproducts of fossil fuel pollution — react with one another in the presence of sunlight and warm temperatures, resulting in a chain reaction. This chain reaction can mean that large amounts of ozone can bloom from even moderate amounts of nitrogen oxides.

Scientists can detect ozone by detecting the absorption of specific wavelengths of light, but they have had to rely on ground data and radiosondes — atmospheric instrumentation bundles sent up on weather balloons — to surmount the large uncertainties associated with the technique.

“This is the reason comparisons were made between low-level ozone direct measurements with those obtained from satellites,” said Fernando. “The importance is that the satellite data were used to improve model performance — that this work will lead to better model predictions and hence superior forecasting of ozone and improved health warnings.”

The satellites currently provide data every 16 days. Each square, or pixel, of the grid they cover is five by eight kilometers, but Van Schoik said that the resolution would continue to improve.

“NASA has developed tools that are starting to fulfill much of the promise that we hoped for when NASA began engaging in global environmental monitoring,” he said. “With each member of our team adding their own expertise, we are seeing just how powerful that can be.”

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>