Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable Light Illuminates the Distribution of Picophytoplankton

19.12.2007
Tiny photosynthetic plankton less than a millionth of a millimeter in diameter numerically dominate marine phytoplankton. Their photosynthesis uses light to drive carbon dioxide uptake, fueling the marine food web over vast areas of the oceans.

A new study published in this week’s PLoS ONE by post-doctoral researcher Dr Christophe Six and a team of scientists from Mount Allison University, Sackville, New Brunswick, Canada, illuminates how the environment regulates the distributions of these ecologically important species.

Dr Doug Campbell, Canadian Research Chair in Environmental Processes and co-author explains, "Phytoplankton are entrained in the water column and are thus subject to rapid changes in light as they mix through the upper layer of the ocean."

Dr Christophe Six adds, “Phytoplankton need light for photosynthesis and survival, but surprisingly this light also inactivates a key component of the photosynthetic apparatus, photosystem II. This Photoinactivation of photosystem II decreases photosynthesis and can even kill cells, unless they can counteract the damage through repair, which requires nutrients.”

“We found the picophytoplankton species isolated from different regions of the ocean have different abilities for this repair, and therefore have different abilities to tolerate increases in light. Their repair capacities are consistent with the different light and nutrient regimes in their local environments; species from deep ocean regions with stable light and low nutrients have very limited repair capacity, but species from coastal regions with more variable light and higher nutrients are more able to cope with variable light through rapid repair.”

This result indicates that picophytoplankton species’ tolerance of exposures to high light can help to explain how these organisms are distributed throughout the ocean. The group measures the rates of photoinactivation and the rates of the counteracting repair in a wide variety of phytoplankton species, and next plans to contribute to ocean models to predict phytoplankton carbon cycling in response to future climate change.

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001341

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>