Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral reefs unlikely to survive in acid oceans

18.12.2007
Carbon emissions from human activities are not just heating up the globe, they are changing the ocean’s chemistry. This could soon be fatal to coral reefs, which are havens for marine biodiversity and underpin the economies of many coastal communities.

Scientists from the Carnegie Institution’s Department of Global Ecology have calculated that if current carbon dioxide emission trends continue, by mid-century 98% of present-day reef habitats will be bathed in water too acidic for reef growth. Among the first victims will be Australia’s Great Barrier Reef, the world’s largest organic structure.

Chemical oceanographers Ken Caldeira and Long Cao are presenting their results in a multi-author paper in the December 14 issue of Science* and at the annual meeting of American Geophysical Union in San Francisco on the same date. The work is based on computer simulations of ocean chemistry under levels of atmospheric CO2 ranging from 280 parts per million (pre-industrial levels) to 5000 ppm. Present levels are 380 ppm and rapidly rising due to accelerating emissions from human activities, primarily the burning of fossil fuels.

“About a third of the carbon dioxide put into the atmosphere is absorbed by the oceans,” says Caldeira, “which helps slow greenhouse warming, but is a major pollutant of the oceans.” The absorbed CO2 produces carbonic acid, the same acid that gives soft drinks their fizz, making certain minerals called carbonate minerals dissolve more readily in seawater. This is especially true for aragonite, the mineral used by corals and many other marine organisms to grow their skeletons.

“Before the industrial revolution, over 98% of warm water coral reefs were bathed with open ocean waters 3.5 times supersaturated with aragonite, meaning that corals could easily extract it to build reefs,” says Cao. “But if atmospheric CO2 stabilizes at 550 ppm -- and even that would take concerted international effort to achieve -- no existing coral reef will remain in such an environment.” The chemical changes will impact some regions sooner than others. At greatest risk are the Great Barrier Reef and the Caribbean Sea.

Carbon dioxide’s chemical effects on the ocean are largely independent of its effects on climate, so measures to mitigate warming short of reducing emissions will be of little help in slowing acidification, the researchers say. In fact, impending chemical changes may require emissions cuts even more drastic than those for climate alone.

“These changes come at a time when reefs are already stressed by climate change, overfishing, and other types of pollution,” says Caldeira, “so unless we take action soon there is a very real possibility that coral reefs — and everything that depends on them —will not survive this century.”

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>