Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It's official: The carbon crisis is lethal for coral reefs

The largest living structures on Earth and the millions of livelihoods which depend upon them are at risk, the most definitive review yet of the impact of rising carbon emissions on coral reefs has concluded


The largest living structures on Earth and the millions of livelihoods which depend upon them are at risk, the most definitive review yet of the impact of rising carbon emissions on coral reefs has concluded.

In a paper published in the prestigious Science Magazine today, 17 eminent marine scientists reveal that world leaders face a race against time in preparing coral reefs and the coastal communities dependent upon them for the inevitable impact of rising levels of carbon dioxide (CO2) in the Earth’s atmosphere.

On the eve of the International Year of the Reef 2008 the scientists, from seven countries, have warned that most coral reefs will not survive the rapid increases in global temperatures and atmospheric CO2 that are forecast over this century by the Inter-governmental Panel on Climate Change (IPCC), which released its report a few weeks ago, unless drastic action is taken to curb CO2 emissions.

The scientists, who are leading members of the international Coral Reef Targeted Research and Capacity Building for Management Program (CRTR), argue that rising global CO2 emissions represent an ‘irreducible risk’ that will rapidly outstrip the capacity of local coastal managers and policy-makers to maintain the health of these critical ecosystems, if CO2 emissions are allowed to continue unchecked.


"This crisis is on our doorstep, not decades away. We have little time in which to respond, but respond, we must!” says Professor Ove Hoegh-Guldberg, lead author of the Science paper, The Carbon Crisis: Coral Reefs under Rapid Climate Change and Ocean Acidification.

“The livelihoods of 100 million people living along the coasts of tropical developing countries will be among the first major casualties of rising levels of carbon in the atmosphere,” says Professor Hoegh-Guldberg.

“The warmer and more acidic oceans caused by the rise of carbon dioxide from the burning of fossil fuels threaten to destroy coral reef ecosystems, exposing people to flooding, coastal erosion and the loss of food and income from reef-based fisheries and tourism. And this is happening just when many nations are hoping that these industries would allow them to alleviate their impoverished state.”

Coral reefs are often portrayed as natural wonders of great beauty which makes them an important tourism attraction. In Australia, revenue from international tourism to the Great Barrier Reef exceeds $6.8 billion per year. It is estimated that coral reef-related tourism generates tens of billions of dollars per year worldwide. They are the economic engine of a vast number of economies around the world.

Professor Hoegh-Guldberg, who is based at The University of Queensland, says coral reefs occupy a unique niche in the world’s environment, where water temperatures and other environmental factors are ‘just right’. "But raising as little as 1°C the temperature that ocean surface waters reach in summer subjects coral reefs to stresses which lead quickly to mass bleaching. Raise the temperature a little more, and the corals that build reefs die in great numbers. No coral, no coral reef ecosystem," says Professor Hoegh-Guldberg.

“The double whammy, however, is ocean acidification. Increased CO2 not only warms the climate but it also dissolves in sea water making it more acidic. This, in turn, decreases the ability of corals to produce calcium carbonate, which is what the spectacular framework of coral reefs is made of.

"In summary, the environment that has surrounded coral reefs for hundreds of thousands of years is changing so fast that compensatory biological responses are lagging behind, putting at risk the marine ecosystem with the highest biodiversity on Earth."

Professor Hoegh-Guldberg says the concentration of CO2 in the Earth’s atmosphere is 380 parts per million (ppm), which is 80ppm higher than where it has been for the past 740,000 years, if not 20 million years. Increasing atmospheric CO2 has already brought about a +0.74°C rise in temperature, he says.


"If current CO2 emission trends continue, then even the most conservative estimates predict CO2 concentrations exceeding 500ppm and global temperature increases of 2°C or more by the end of the century," Professor Hoegh-Guldberg says. “Under these conditions coral reefs are likely to dwindle into insignificance; they’ll be reduced to rubble, threatening the fate of those tens of millions of people whose livelihoods depend upon them.

“We clearly have to do more to reduce CO2 emissions and still more in preparing vulnerable communities to the almost inevitable problems that they will face as a result of already entrained climate change.”

As world leaders gather for the last day of the United Nations Framework Convention for Climate Change (UNFCCC) meeting in Bali today, the CRTR scientists argue that the issue of global CO2 emissions demands leadership at the international level, including a collective agreement on carbon emission reductions.

Says Dr Marea Hatziolos, CRTR Team Leader, World Bank, and a co-author of the Science paper: “There is an urgent need for high carbon growth countries to reduce their total CO2 emissions and a responsibility on the part of industrialized nations to assist the most vulnerable coral reef states adapt to climate change impacts while reducing local risks to reefs.”

Dr Hatziolos points out that most coral reefs occur within developing countries where poverty and reliance on ecosystem goods and services place great pressure on them.

“In developing countries, tourism based on ecosystem services provided by coral reefs is a vital and rapidly expanding industry,” Dr Hatziolos says. “Much of the protein consumed by poor coastal communities is supplied in one way or another by coral reefs.

“Less visible, but no less important, is the essential role played by coral reefs in providing habitat for a vast array of marine species which contribute to a complex food chain that extends across the oceans.

“The threats to this natural capital from increased CO2 emissions generated on a global scale simply raise the urgency for local reef managers and policy-makers to take responsibility for the ‘reducible risk’ to coral reefs, such as over-fishing, pollution and unsustainable coastal development.

“However, this is unlikely to happen, at the intensity and scale required, unless industrialised nations make funds available to assist the most vulnerable coral reef states manage these reducible risks.”


Dr Hatziolos says a range of policy and management tools are readily available, some of which have been refined through support from the CRTR Program, and no time should be lost in applying them more widely and effectively.

“These tools include coastal zone management, co-management arrangements between governments and local communities to foster effective stewardship, integrated catchment approaches to managing water quality and environmental flows, enforcement and compliance with fishing regulations, restoration of reefs and coastal vegetation and sustainable tourism,” she says.

Mark Paterson | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>