Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid help for the Chinese climate

17.12.2007
A Norwegian environmental project for China's cement industry could lead to cuts in CO2 that are equivalent to twice Norway's total emissions of greenhouse gases.

China has the biggest cement industry in the world, but most of its production is based on outdated technology, and since its plants are coal-fired, emissions of CO2 and dust are huge. The cement industry alone discharges 1.1 billion tonnes of CO2 a year, 26 times as much as Norway's total CO2 emissions.

But China has a waste problem as well as an environmental problem. The country produces more than one billion tonnes of waste a year, and the way in which it is treated is less than satisfactory. Waste is a major health hazard and is an enormous source of pollution.

China has prioritized economic development for the past thirty years, at the cost of the environment. But now things are starting to change. The Chinese government is now aware of the problem and is in the process of making a major about-turn.

Two birds with one stone

This is the background for a well-received Norwegian initiative that is based on replacing part of the fossil fuel used in the cement industry with industrial waste.

“We have just started a three-year project that aims to ameliorate both the environmental problem and the waste problem,” says special consultant Kåre Helge Karstensen of SINTEF Construction and Environment.

“We will use industrial waste as a supplementary fuel in the cement industry. It cannot completely replace coal, but we could come up to a 40 percent replace factor. This waste consists of everything from tyres and plastic to organic waste. When we reduce the consumption of coal – which is a non-renewable energy source – in this way, the cement industry will become more sustainable. And when millions of tonnes of coal can be replaced by waste, we also protect the environment from enormous CO2 emissions. This could be a quantum leap in solving a lot of environmental problems,” says Karstensen.

Two years ago, he presented the project to the Norwegian embassy in Beijing and SEPA, the Chinese environmental administration. The project proposal was accepted and approved by the Chine4se government at record speed. Today, SINTEF is at work in China, in close collaboration with SEPA, local authorities, industry and a number of research institutes.

Special expertise

Karstensen has been working on energy and environmental problems for several years, and today, he operates all over the world, working for all of the UN institutions that have the environment on their agendas; this year, he is involved in projects on every continent of the world. One of his areas of special expertise involves using cement kilns as a means of reducing emissions, thus helping to meet the challenges posed by energy and environmental problems.

“This type of expertise is very attractive at a time when we are facing global warming and a lack of energy and resources,” says Karstensen.

The SINTEF scientist, who has already spent several months in China, is just on a brief visit to Norway before returning to China . Together with his colleague Harald Justnes, he expects that he will be living in the east for several more years. The current project has aroused a great deal of interest in China, and has been widely discussed in the media.

“Our job is to develop a basis for an integrated policy that will prepare the ground for the cement industry to be able to utilise waste materials as a replacement source of energy and raw materials,” says Karstensen. “It is vital that this should be done properly from the very beginning.”

Scepticism reversed

Non-governmental organisations (NGOs) such as Greenpeace have long been sceptical to the idea of using cement kilns to destroy hazardous waste, particularly in developing countries, but their scepticism has begun to diminish.

“They realise that solutions are needed,” says Karstensen. Chinese industry already exists, with all its consumption of resources and its emissions. The question thus turns to how we can make industry more environmentally and resources friendly. And this is where the unsolved waste problems come into the picture. Responsible waste treatment is a complex and expensive business, but by exploiting and recovering the valuable energy of waste products in the cement industry, we can obtain an integrated and attractively cost-effective solution:

- The cement industry can reduce its consumption of non-renewable resources and energy at the same time as it reduces emissions.

- Waste-generating industry is given more reasonable waste disposal solutions, which in turn means that more waste will be treated than is the case at present.

- The authorities make more rapid gains in environmental and health terms.

All over China

Just now, the project participants are mapping out the status of current practice as regards waste generation and treatment, and drawing up guidelines and standards for how these processes should be carried out in practice.

Next year, the standards will be tested in full scale in seven Chinese provinces that are taking part in the cooperative project. One of these is Beijing, which is in full swing with getting a satisfactory waste-treatment system into place before the Olympic Games next year. If the trial phase is satisfactory, the system will be implemented in full scale throughout China.

“This is the route that large parts of the world will have to take,” says Karstensen. “We must identify simple, reasonable technologies that will mean win-win solutions for the industries involved. This is particularly interesting in rapidly growing developing countries with serious environmental problems”.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>