Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid help for the Chinese climate

17.12.2007
A Norwegian environmental project for China's cement industry could lead to cuts in CO2 that are equivalent to twice Norway's total emissions of greenhouse gases.

China has the biggest cement industry in the world, but most of its production is based on outdated technology, and since its plants are coal-fired, emissions of CO2 and dust are huge. The cement industry alone discharges 1.1 billion tonnes of CO2 a year, 26 times as much as Norway's total CO2 emissions.

But China has a waste problem as well as an environmental problem. The country produces more than one billion tonnes of waste a year, and the way in which it is treated is less than satisfactory. Waste is a major health hazard and is an enormous source of pollution.

China has prioritized economic development for the past thirty years, at the cost of the environment. But now things are starting to change. The Chinese government is now aware of the problem and is in the process of making a major about-turn.

Two birds with one stone

This is the background for a well-received Norwegian initiative that is based on replacing part of the fossil fuel used in the cement industry with industrial waste.

“We have just started a three-year project that aims to ameliorate both the environmental problem and the waste problem,” says special consultant Kåre Helge Karstensen of SINTEF Construction and Environment.

“We will use industrial waste as a supplementary fuel in the cement industry. It cannot completely replace coal, but we could come up to a 40 percent replace factor. This waste consists of everything from tyres and plastic to organic waste. When we reduce the consumption of coal – which is a non-renewable energy source – in this way, the cement industry will become more sustainable. And when millions of tonnes of coal can be replaced by waste, we also protect the environment from enormous CO2 emissions. This could be a quantum leap in solving a lot of environmental problems,” says Karstensen.

Two years ago, he presented the project to the Norwegian embassy in Beijing and SEPA, the Chinese environmental administration. The project proposal was accepted and approved by the Chine4se government at record speed. Today, SINTEF is at work in China, in close collaboration with SEPA, local authorities, industry and a number of research institutes.

Special expertise

Karstensen has been working on energy and environmental problems for several years, and today, he operates all over the world, working for all of the UN institutions that have the environment on their agendas; this year, he is involved in projects on every continent of the world. One of his areas of special expertise involves using cement kilns as a means of reducing emissions, thus helping to meet the challenges posed by energy and environmental problems.

“This type of expertise is very attractive at a time when we are facing global warming and a lack of energy and resources,” says Karstensen.

The SINTEF scientist, who has already spent several months in China, is just on a brief visit to Norway before returning to China . Together with his colleague Harald Justnes, he expects that he will be living in the east for several more years. The current project has aroused a great deal of interest in China, and has been widely discussed in the media.

“Our job is to develop a basis for an integrated policy that will prepare the ground for the cement industry to be able to utilise waste materials as a replacement source of energy and raw materials,” says Karstensen. “It is vital that this should be done properly from the very beginning.”

Scepticism reversed

Non-governmental organisations (NGOs) such as Greenpeace have long been sceptical to the idea of using cement kilns to destroy hazardous waste, particularly in developing countries, but their scepticism has begun to diminish.

“They realise that solutions are needed,” says Karstensen. Chinese industry already exists, with all its consumption of resources and its emissions. The question thus turns to how we can make industry more environmentally and resources friendly. And this is where the unsolved waste problems come into the picture. Responsible waste treatment is a complex and expensive business, but by exploiting and recovering the valuable energy of waste products in the cement industry, we can obtain an integrated and attractively cost-effective solution:

- The cement industry can reduce its consumption of non-renewable resources and energy at the same time as it reduces emissions.

- Waste-generating industry is given more reasonable waste disposal solutions, which in turn means that more waste will be treated than is the case at present.

- The authorities make more rapid gains in environmental and health terms.

All over China

Just now, the project participants are mapping out the status of current practice as regards waste generation and treatment, and drawing up guidelines and standards for how these processes should be carried out in practice.

Next year, the standards will be tested in full scale in seven Chinese provinces that are taking part in the cooperative project. One of these is Beijing, which is in full swing with getting a satisfactory waste-treatment system into place before the Olympic Games next year. If the trial phase is satisfactory, the system will be implemented in full scale throughout China.

“This is the route that large parts of the world will have to take,” says Karstensen. “We must identify simple, reasonable technologies that will mean win-win solutions for the industries involved. This is particularly interesting in rapidly growing developing countries with serious environmental problems”.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>