Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does working for a better environment really lead to peace?

13.12.2007
Climate advocate Al Gore accepted the Nobel Peace Prize this December 10th. New Norwegian research suggests, however, that there is no connection between environmental crises and armed conflict.

”Extensive climate changes may alter and threaten the living conditions of much of mankind. They may induce large-scale migration and lead to greater competition for the earth’s resources. Such changes will place particularly heavy burdens on the world’s most vulnerable countries. There may be increased danger of violent conflicts and wars, within and between states.”

A broader concept of peace

This is an excerpt from the Nobel Committee’s explanation for the award of the 2007 Nobel Peace Prize, shared equally by the former US Vice President Al Gore Jr. and the IPCC (Intergovernmental Panel on Climate Change).

The Nobel Committee interprets “working for peace” as including saving the Earth’s environment. Researchers, advocacy groups, politicians and the media have all highlighted local resource crises as the reason for a host of armed conflicts around the globe. The premise underlying the Nobel Committee’s expanded definition of peace is that there is a causal connection between natural resource shortages and violent conflict.

But is that true? Not according to a new study from the Norwegian University of Science and Technology (NTNU).

Surprising results

A series of case studies in recent years from areas stricken by conflict has helped develop a theoretical basis for the claim that natural resource scarcity leads to armed conflict. Darfur, Sudan, is a recent example of this presumed causal connection, with Rwanda, Haiti and Somalia as other examples.

Helga Malmin Binningsbø, Indra de Soysa and Nils Petter Gleditsch, from NTNU’s Department of Sociology and Political Science, looked at the environmental pressures in 150 countries in the period from 1961 to 1999. By using an internationally recognized technique for measuring a country’s environmental sustainability –“The Ecological Footprint” – the researchers were able to compare these numbers with statistics on armed conflict during the same period.

Their conclusion may seem paradoxical—lands where resources are heavily exploited show a clear connection to a lack of armed conflict. Or alternatively, nations troubled by war during the research period had lower exploitation rates of their natural resources. The findings give researchers solid empirical support for stating that environmental scarcity is not the reason behind violent conflict.

--A higher Ecological Footprint is negatively correlated with conflict onset, controlling for income effects and other factors, the researchers say in their article, published in the peer-reviewed journal Population and Environment.

-- Of course people fight over resources, that’s not our argument. We believe, rather, that we have a strong scientific case against the Neomalthusian model, says Binningsbø.

Darfur

-- I have seen with my own eyes how climate change and resource scarcity, particularly when it comes to water and grazing lands, can fuel tensions, says Jan Egeland, director of the Norwegian Institute of International Affairs (NUPI).

Egeland was formerly the UN’s Under-Secretary-General for Humanitarian Affairs and Emergency Relief Coordinator, responsible for refugee issues, and has seen first-hand many conflicts across the globe that surely could have been caused by environmental crises.

Egeland has previously stated that the Darfur conflict was the result of an environmental crisis. He is now a little more uncertain of the causal connection.

-- That resource scarcity in specific areas strengthens existing conflicts is something that I have no doubt of, he says. (But) I still believe that this year’s peace prize award was sound.

Resources and populations

In their article, the NTNU researchers challenge a popular school of thought, the Neomalthusian school. They see climate change and the over consumption of natural resources as a modern day illustration of Thomas Malthus’ theory.

Thomas Malthus (1766-1834) developed the well-known theory that a country’s food production cannot keep up with its population growth over the long run. Starvation, war and early death would regulate the balance between food availability and population numbers. That means that the bulk of the population would live a minimalist existence.

But Malthus, who lived at the end of the 1700s, couldn’t predict later technological breakthroughs, such as the Green Revolution, which have altered his bleak global caloric intake equation.

The Ecological Footprint

Techniques developed by the Global Footprint Network, an international research network, form the underpinnings for the NTNU group’s research numbers and methods.

-- The Environmental Footprint describes a country’s resource consumption compared to its ecological capacity, explain Binningsbø and de Soysa.

The Ecological Footprint measures humankind’s exploitation of natural resources. In other words, how much do you have, and how much do you use?

The method is widely used as a measurement technique, but has also been criticised. Researchers have argued that the method can only be applied on a global basis, in as much as countries trade with each other, and therefore aren’t necessarily solely dependent on their own natural resources.

By: Tor H. Monsen

”Global Footprint Network”: http://www.footprintnetwork.org/

“Population and Environment”:http://www.springerlink.com/content/105738/

Nina Tveter | alfa
Further information:
http://www.footprintnetwork.org/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>