Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Refining Fire Behavior Modeling

23.05.2012
Assessing Wildland Fuels and Hazard Mitigation Treatments in the Southeast
Research by USDA Forest Service Southern Research Station biometrician Bernie Parresol takes center stage in a special issue of the journal Forest Ecology and Management due out in June. Parresol is lead author of two of the five articles—and co-author of two more—in an issue that focuses on methods that incorporate fine-scale data into the tools Southeastern forest managers use to assess wildfire potential and plan mitigation treatments.

“Taken together, the research reported in these articles shows that fine scale measurements repeated over time can be put into a manageable framework and reduced to create dynamic fire behavior models useful to managers,” says Parresol. “They can also be used to help address scientific questions and to evaluate the effect of management conditions.”

Fire is an important part of forest ecosystems in the southeastern United States, especially in the the Coastal Plain. European settlers cleared most of the native longleaf pine forests of the region; industry later planted many of the same acres in loblolly pine plantations. Meanwhile, fire suppression policies broke the cycle of frequent low-intensity fires in the remaining natural forests, causing the buildup of fuels that leads to wildfires.

Over the last decades, southeastern land managers added prescribed fire to other forest treatments to reduce wildland fires, promote forest restoration, and improve wildlife habitat. Because of budget constraints and public concerns about fire and smoke, managers need to prioritize the areas where they will use prescribed fire. To do this, they use wildfire hazard assessments such as LANDFIRE and the Southern Wildfire Risk Assessment (SWRA), both of which use satellite images and other supporting data to represent fuels across a landscape. Although these tools work well enough at the state and regional levels, they don’t offer enough detail to land managers trying to decide which of their hundreds or thousands of acres should be burned first.

The special issue of Forest Ecology and Management focuses on a study conducted on the 200,000-acre Savannah River Site as representative of an actively managed forest landscape in the Southeast. Researchers used studies on the site to assess wildland fuels, potential fire behavior and treatments to reduce fire hazard. In his first article, Parresol and fellow researchers develop equations to describe fuel loads for both dead and alive materials on the site based on vegetation type, stand age, recent fire history and other aspects. These equations were then used to create custom landscape models based on the actual data from the site, then compared with results from LANDFIRE and SWRA to assess the effectiveness of those tools.

Most fire behavior analyses rely on sparse plot inventories and data from satellites, and often do not address the complexity found at the ground level where managers operate. For a second article, Parresol and fellow researchers demonstrated a statistical approach that can incorporate hundreds to thousands of fuel observations into models that managers can easily use to prioritize areas to treat to reduce the wildfire hazard.

Access the special issue of Forest Ecology and Management:
http://www.sciencedirect.com/science/journal/03781127/273

Bernie Parresol | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Ecology FIRE Forest Ecology Forest Service LANDFIRE Modeling Parresol SWRA forest ecosystem pine forest

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>