Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reed and roots provide protection

16.09.2008
Snails, crabs, insect larvae - the shores of rivers and lakes are populated by thousands of small animals that play an important role in the food chain of the freshwater ecosystem. They eat the leaves, among other things, which fall into the water, and so keep the waters clean.

Up to 10.000 organisms can be found on a square meter of water bottom, of which a lot are also terrestrial insect larvae. Scientists call the whole group macrozoobenthos - these are all invertebrates living on the bottom and still visible with naked eyes. Researchers at the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) now study the impact that ship-induced waves can have on these small animals.

The larva of Calopteryx splendens, a dragonfly, crawls on a stone in shallow water. Then operates Friederike Gabel the wave machine. A wave, comparable to that of a sport boat, runs along the three-metre-long canal. The larva is washed out - "detached" say the researchers - and paddle around several minutes helplessly in the water until it found again the "solid ground" under its feet. “If they stay suspended in the water, the larvae take the risk to be eaten" explains F. Gabel, a specialist of the effect of waves on invertebrates. In addition, the larva spent energy to fix them back, which has negative effects on their growth and reproduction. The researchers fear that ship-induced waves increase larval mortality and subsequently biodiversity, which would have a long-term effect on the ecological quality of rivers and lakes.

Using an experimental set up, they have defined in laboratory for which threshold of wave strength the animals will be washed out from their standing place. The results are now published in the journal Freshwater Biology (2008, 53, 1567-1578). They found that the more complex was the structure of the habitat, less massive was the detachment. "The impact of waves is the lowest, when the shore is covert with tree roots," explains F. Gabel. Even dense reed belts would provide a sufficient protection against the power of the waves to the animals. On the contrary, the detachment is maximal on sand and stones. Complex habitats reduce the impact of waves since they offer better hiding place and fixing possibilities for the animals, explains F. Gabel.

The researchers have now begun to collect samples in natural habitat. They want to determine the long-term impact of ship-induced waves on the invertebrates inhabiting the shore. They survey different locations of the River Havel and compare shore sections differently exposed to ship-induced wave intensity.

We are not against the ship traffic, stresses F. Gabel, however there is a need to find simple measures to protect the shores. "As a result of our investigations we could make recommendations for water management, such as the design of the shores or, that ships in certain areas should pass by far away from the shore or should lower their speed" said the scientist.

Christine Vollgraf | alfa
Further information:
http://www.fv-berlin.de

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>