Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reducing CO2 through technology and smart growth

Georgia Tech study shows hybrid vehicles and higher density cities could eliminate future growth of CO2 emissions from autos

A Georgia Tech City and Regional Planning study on climate change, published February 10, 2009 online by Environmental Science and Technology, shows that “smart growth” combined with the use of hybrid vehicle technology could reduce cities’ carbon dioxide (CO2) emissions – the principal driver of global warming – significantly by 2050.

According to Brian Stone, associate professor of City and Regional Planning, the research shows that expected levels of CO2 emissions from cars and trucks in 2050 could be reduced back to 2000 levels if the full vehicle fleet was converted to hybrid electric vehicles, such as the Toyota Prius or the soon-to-be released Chevy Volt. This research also found that a doubling of population density in large U.S. cities by 2050 would have a greater impact on CO2 reductions than full hybridization of the vehicle fleet.

Stone’s study looked at 11 major metropolitan regions of the Midwestern U.S. over a 50-year period and took into account three different scenarios: the use of hybrid vehicles and two different urban growth scenarios through which population density was increased over time, a central component of smart growth planning.

“In this study we looked at two general approaches on how to deal with the challenge of climate change,” said Stone. “One approach is to improve vehicle technology and become more efficient. We can use less gas and reduce tailpipe emissions of CO2. The second approach is to change behavior by changing the way we design cities. We can travel less and take more walking and transit trips.”

Stone says he believes it would be possible for virtually all cars on the roads by 2050 to be hybrid electric vehicles, assuming the costs of these vehicles become more competitive with conventional engine technologies. Today’s hybrid electric vehicles can achieve 40 miles to the gallon and higher.

However, even the full hybridization of the national vehicle fleet by 2050 would not meet the CO2 targets identified though the Kyoto Protocol, an international climate change agreement which the United States has signed but not yet ratified. To meet these global targets, CO2 emissions from all sectors on the U.S. would need to return to 1990 levels or lower. According to Stone’s work, meeting this goal in the transportation sector would require a combination of technological improvements and higher density land use patterns in cities.

“If we can help cities to grow in more compact ways, what we call smart growth, it will help reduce emissions even further by allowing people to travel less often, travel shorter distances when they do travel and take advantage of public transit,” said Stone.

The eleven metropolitan regions that were studied include Madison, Wisconsin, Columbus, Ohio, Indianapolis, Indiana, Minneapolis-St. Paul, Minnesota, Cincinnati, Ohio, Grand Rapids, Michigan, Chicago, Illinois, Detroit, Michigan and Dayton, OH. In addition to Stone, Dr. Tracey Holloway, Scot Spak, and Adam Mednick also authored the study.

Matt Nagel | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>