Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing CO2 through technology and smart growth

13.02.2009
Georgia Tech study shows hybrid vehicles and higher density cities could eliminate future growth of CO2 emissions from autos

A Georgia Tech City and Regional Planning study on climate change, published February 10, 2009 online by Environmental Science and Technology, shows that “smart growth” combined with the use of hybrid vehicle technology could reduce cities’ carbon dioxide (CO2) emissions – the principal driver of global warming – significantly by 2050.

According to Brian Stone, associate professor of City and Regional Planning, the research shows that expected levels of CO2 emissions from cars and trucks in 2050 could be reduced back to 2000 levels if the full vehicle fleet was converted to hybrid electric vehicles, such as the Toyota Prius or the soon-to-be released Chevy Volt. This research also found that a doubling of population density in large U.S. cities by 2050 would have a greater impact on CO2 reductions than full hybridization of the vehicle fleet.

Stone’s study looked at 11 major metropolitan regions of the Midwestern U.S. over a 50-year period and took into account three different scenarios: the use of hybrid vehicles and two different urban growth scenarios through which population density was increased over time, a central component of smart growth planning.

“In this study we looked at two general approaches on how to deal with the challenge of climate change,” said Stone. “One approach is to improve vehicle technology and become more efficient. We can use less gas and reduce tailpipe emissions of CO2. The second approach is to change behavior by changing the way we design cities. We can travel less and take more walking and transit trips.”

Stone says he believes it would be possible for virtually all cars on the roads by 2050 to be hybrid electric vehicles, assuming the costs of these vehicles become more competitive with conventional engine technologies. Today’s hybrid electric vehicles can achieve 40 miles to the gallon and higher.

However, even the full hybridization of the national vehicle fleet by 2050 would not meet the CO2 targets identified though the Kyoto Protocol, an international climate change agreement which the United States has signed but not yet ratified. To meet these global targets, CO2 emissions from all sectors on the U.S. would need to return to 1990 levels or lower. According to Stone’s work, meeting this goal in the transportation sector would require a combination of technological improvements and higher density land use patterns in cities.

“If we can help cities to grow in more compact ways, what we call smart growth, it will help reduce emissions even further by allowing people to travel less often, travel shorter distances when they do travel and take advantage of public transit,” said Stone.

The eleven metropolitan regions that were studied include Madison, Wisconsin, Columbus, Ohio, Indianapolis, Indiana, Minneapolis-St. Paul, Minnesota, Cincinnati, Ohio, Grand Rapids, Michigan, Chicago, Illinois, Detroit, Michigan and Dayton, OH. In addition to Stone, Dr. Tracey Holloway, Scot Spak, and Adam Mednick also authored the study.

Matt Nagel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>