Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing CO2 Emissions By Photochemical Recycling To Useful Chemicals

04.10.2010
A new BMBF junior research group founded in Industrial Chemistry at RUB 1.18 Million Euro grant for development of heterogeneous photocatalysts

Starting in October 2010, Dr. Jennifer Strunk will lead a new junior research group in the Laboratory of Industrial Chemistry lead by Prof. Dr. MartinMuhler with a 5-year, 1.18 million Euro research grant from the German Federal Ministry of Education and Research (BMBF). Their research will target the photocatalytic reduction of carbon dioxide to produce useful building block chemicals of the chemical industry.

Dr. Strunk, who has just returned from her postdoctoral research at the University of California, Berkeley, is looking forward to contributing to the research activity at her Alma Mater. The funding of the junior research group originates from a successful application to the Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2” (Technologies for Sustainability and Climate Preservation – Chemical Processes and Molecular Conversion of CO2”) of the BMBF.

Reducing Carbon Emissions using Photocatalyst, Water and Light

To reduce the impact of greenhouse gas emissions, worldwide carbon dioxide emissions have to be reduced as soon as possible. Dr. Jennifer Strunk and her coworkers from the Laboratory of Industrial Chemistry aim to reach this goal by recycling CO2 to important building block chemicals for industrial or fuel applications. Many of these chemicals, for example methane and methanol, are used in large quantities for electricity generation, transportation fuels, and as basis for consumer products. Today these chemicals are produced from natural gas, a dwindling fossil fuel, and so this research also targets the problem of ever decreasing fossil resources. Dr. Strunk has the ambitious goal to recycle CO2 into useful products only by adding water and shining light on the reaction mixture, instead of using hydrogen and a conventional energy-intensive high-pressure process. However, in order to make the CO2 and the water react simply under illumination with light to form the desired products, it requires adding an appropriate photocatalyst to the reaction mixture. As of today, such catalysts are barely known, so Dr. Strunk and the junior research group plan on knowledge-based development, and testing and characterization of a variety of heterogeneous photocatalysts for the desired chemistry.

Dr. Jennifer Strunk

Jennifer Strunk, born 1980, completed her Dipl. in chemistry at the Ruhr-University Bochum from 1999 to 2004 and conducted her PhD research in the Laboratory of Industrial Chemistry of Dr. Prof. Martin Muhler. After receiving her PhD degree in March 2008, she went to the University of California, Berkeley, where she carried out postdoctoral research in the Laboratory of Prof. Alexis T. Bell. During this time she developed expertise in titania catalysts, which are promising candidates for photocatalytic CO2 reduction. As she was born in Herne, Dr. Strunk feels connected to the Ruhr region and she is happy to return to the Ruhr-University with her own research project.

The BMBF Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2”

The research funding within the scope of this Call for Proposals is meant to contribute to reaching Germany’s ambitious climate protection goals. Research and development in key technologies shall be intensified. The chemical industry in particular can make major contributions to overcoming the challenges of climate change by developing new technologies, increasing energy efficiency of industrial processes and reducing energy consumption. Both junior research groups and shared projects between industry and university are funded within the scope of this Call for Proposals.

Contact

Dr. Jennifer Strunk, Technische Chemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25012, E-Mail: jennifer@techem.rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>