Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing CO2 Emissions By Photochemical Recycling To Useful Chemicals

04.10.2010
A new BMBF junior research group founded in Industrial Chemistry at RUB 1.18 Million Euro grant for development of heterogeneous photocatalysts

Starting in October 2010, Dr. Jennifer Strunk will lead a new junior research group in the Laboratory of Industrial Chemistry lead by Prof. Dr. MartinMuhler with a 5-year, 1.18 million Euro research grant from the German Federal Ministry of Education and Research (BMBF). Their research will target the photocatalytic reduction of carbon dioxide to produce useful building block chemicals of the chemical industry.

Dr. Strunk, who has just returned from her postdoctoral research at the University of California, Berkeley, is looking forward to contributing to the research activity at her Alma Mater. The funding of the junior research group originates from a successful application to the Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2” (Technologies for Sustainability and Climate Preservation – Chemical Processes and Molecular Conversion of CO2”) of the BMBF.

Reducing Carbon Emissions using Photocatalyst, Water and Light

To reduce the impact of greenhouse gas emissions, worldwide carbon dioxide emissions have to be reduced as soon as possible. Dr. Jennifer Strunk and her coworkers from the Laboratory of Industrial Chemistry aim to reach this goal by recycling CO2 to important building block chemicals for industrial or fuel applications. Many of these chemicals, for example methane and methanol, are used in large quantities for electricity generation, transportation fuels, and as basis for consumer products. Today these chemicals are produced from natural gas, a dwindling fossil fuel, and so this research also targets the problem of ever decreasing fossil resources. Dr. Strunk has the ambitious goal to recycle CO2 into useful products only by adding water and shining light on the reaction mixture, instead of using hydrogen and a conventional energy-intensive high-pressure process. However, in order to make the CO2 and the water react simply under illumination with light to form the desired products, it requires adding an appropriate photocatalyst to the reaction mixture. As of today, such catalysts are barely known, so Dr. Strunk and the junior research group plan on knowledge-based development, and testing and characterization of a variety of heterogeneous photocatalysts for the desired chemistry.

Dr. Jennifer Strunk

Jennifer Strunk, born 1980, completed her Dipl. in chemistry at the Ruhr-University Bochum from 1999 to 2004 and conducted her PhD research in the Laboratory of Industrial Chemistry of Dr. Prof. Martin Muhler. After receiving her PhD degree in March 2008, she went to the University of California, Berkeley, where she carried out postdoctoral research in the Laboratory of Prof. Alexis T. Bell. During this time she developed expertise in titania catalysts, which are promising candidates for photocatalytic CO2 reduction. As she was born in Herne, Dr. Strunk feels connected to the Ruhr region and she is happy to return to the Ruhr-University with her own research project.

The BMBF Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2”

The research funding within the scope of this Call for Proposals is meant to contribute to reaching Germany’s ambitious climate protection goals. Research and development in key technologies shall be intensified. The chemical industry in particular can make major contributions to overcoming the challenges of climate change by developing new technologies, increasing energy efficiency of industrial processes and reducing energy consumption. Both junior research groups and shared projects between industry and university are funded within the scope of this Call for Proposals.

Contact

Dr. Jennifer Strunk, Technische Chemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25012, E-Mail: jennifer@techem.rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>