Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing CO2 Emissions By Photochemical Recycling To Useful Chemicals

04.10.2010
A new BMBF junior research group founded in Industrial Chemistry at RUB 1.18 Million Euro grant for development of heterogeneous photocatalysts

Starting in October 2010, Dr. Jennifer Strunk will lead a new junior research group in the Laboratory of Industrial Chemistry lead by Prof. Dr. MartinMuhler with a 5-year, 1.18 million Euro research grant from the German Federal Ministry of Education and Research (BMBF). Their research will target the photocatalytic reduction of carbon dioxide to produce useful building block chemicals of the chemical industry.

Dr. Strunk, who has just returned from her postdoctoral research at the University of California, Berkeley, is looking forward to contributing to the research activity at her Alma Mater. The funding of the junior research group originates from a successful application to the Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2” (Technologies for Sustainability and Climate Preservation – Chemical Processes and Molecular Conversion of CO2”) of the BMBF.

Reducing Carbon Emissions using Photocatalyst, Water and Light

To reduce the impact of greenhouse gas emissions, worldwide carbon dioxide emissions have to be reduced as soon as possible. Dr. Jennifer Strunk and her coworkers from the Laboratory of Industrial Chemistry aim to reach this goal by recycling CO2 to important building block chemicals for industrial or fuel applications. Many of these chemicals, for example methane and methanol, are used in large quantities for electricity generation, transportation fuels, and as basis for consumer products. Today these chemicals are produced from natural gas, a dwindling fossil fuel, and so this research also targets the problem of ever decreasing fossil resources. Dr. Strunk has the ambitious goal to recycle CO2 into useful products only by adding water and shining light on the reaction mixture, instead of using hydrogen and a conventional energy-intensive high-pressure process. However, in order to make the CO2 and the water react simply under illumination with light to form the desired products, it requires adding an appropriate photocatalyst to the reaction mixture. As of today, such catalysts are barely known, so Dr. Strunk and the junior research group plan on knowledge-based development, and testing and characterization of a variety of heterogeneous photocatalysts for the desired chemistry.

Dr. Jennifer Strunk

Jennifer Strunk, born 1980, completed her Dipl. in chemistry at the Ruhr-University Bochum from 1999 to 2004 and conducted her PhD research in the Laboratory of Industrial Chemistry of Dr. Prof. Martin Muhler. After receiving her PhD degree in March 2008, she went to the University of California, Berkeley, where she carried out postdoctoral research in the Laboratory of Prof. Alexis T. Bell. During this time she developed expertise in titania catalysts, which are promising candidates for photocatalytic CO2 reduction. As she was born in Herne, Dr. Strunk feels connected to the Ruhr region and she is happy to return to the Ruhr-University with her own research project.

The BMBF Call for Proposals “Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2”

The research funding within the scope of this Call for Proposals is meant to contribute to reaching Germany’s ambitious climate protection goals. Research and development in key technologies shall be intensified. The chemical industry in particular can make major contributions to overcoming the challenges of climate change by developing new technologies, increasing energy efficiency of industrial processes and reducing energy consumption. Both junior research groups and shared projects between industry and university are funded within the scope of this Call for Proposals.

Contact

Dr. Jennifer Strunk, Technische Chemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25012, E-Mail: jennifer@techem.rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>