Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The recycling spent nickel catalysts could be both profitable and environmentally friendly

07.07.2011
The recycling spent nickel catalysts could be both profitable and environmentally friendly

In Southeast Asia, palm oil is used both as an ingredient for cooking and a raw material for biodiesel production. To stabilize the oil against decomposition, it has to be hydrogenated in the presence of a nickel catalyst that modifies its physical and chemical properties. Eventually, the nickel catalyst becomes contaminated by residual fats, oils and other chemicals, rendering it unusable.

Qizhen Yang and co-workers at the A*STAR Singapore Institute of Manufacturing Technology (SIMTech) have now shown that these spent nickel catalysts could be recovered in a manner that is not only safe and environmentally friendly, but which could also generate considerable profits for recycling companies.

“There is increasing concern over the sustainability of new recycling technologies and processes,” explains Yang. “Traditionally spent catalysts, which have a commercial value, would be used as raw materials for nickel smelting. What attracted the recyclers for implementing this new process is the fact that the recovery of pure nickel would deliver more added market value, and that the process would be greener and more socially responsible, making it more sustainable.”

Many methods of recycling nickel catalysts have been attempted, including chemical leaching, roasting, electrolysis and bioleaching with microorganisms. The SIMTech researchers propose a combination of technologies: the catalyst is first roasted to remove residual impurities, producing an ash containing large amounts of nickel and nickel oxide; the ash is then subject to acid leaching, acid separation, nickel enrichment and finally deposition of the metal from solution.

These steps constitute a ‘closed-loop’ process whereby many of the byproducts, including the acid, plating solutions and dilution water, can be reused to minimize waste. On weighing the costs of materials, equipment and labor against the potential market conditions, the researchers showed that a small nickel recovery plant of this sort would be economically viable if the price of nickel is more than $12.57 per kilogram—a very realistic target.

The researchers also analyzed the carbon footprint of the operation and showed that its greenhouse gas emissions could be minimized through the use of efficient processing techniques and by sourcing green electricity. Finally, given that the process would create jobs and produce no toxic waste, it could certainly be a socially sustainable solution.

“Our industrial partners are now implementing the process in a new nickel recovery facility,” says Yang. “They are using our sustainability assessment results to understand what factors affect the sustainability of their processes and to help them justify the decisions they make in recovering nickel from waste.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

References

Yang, Q.Z., Qi, G.J., Low, H.C. & Song, B. Sustainable recovery of nickel from spent hydrogenation catalyst: economics, emissions and wastes assessment. Journal of Cleaner Production 19, 365–375 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6354
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>