Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Recycling perlite: New, improved method saves resources

Method gives smaller greenhouse operations economical, eco-friendly alternative

Perlite, a processed volcanic mineral, is widely used as a component of soilless growing mixes. Lightweight, sterile, and easy to use, perlite is popular with greenhouse growers.

But because salt and pathogen buildup can occur when perlite is reused, it must be replaced every year or two to minimize the risk of crop failure. The cost of disposing of old material and replacing it with new perlite can be significant and often prohibitive for smaller greenhouse operations.

Hanna Y. Hanna, a researcher at Louisiana State University Agricultural Center's Red River Research Station, has developed a new method for recycling perlite that can save tomato growers a significant amount of money without reducing crop yield.

Hanna, who has done extensive previous research on perlite, says that using the same perlite to grow successive crops like tomatoes can be risky; it tends to compact and is subject to salt build-up and pest contamination. "Steam sterilization of used perlite before planting a new crop is recommended to safeguard against pathogen contamination, but this treatment requires the use of expensive steam generators and is not efficient in desalinating the medium", Hanna said.

In a recent issue of HortTechnology, Hanna reported on a new method developed to accelerate the recycling of perlite. The experiments were conducted in a greenhouse over three growing seasons to evaluate three different methods for perlite recycling and their effects on cost, desalination efficiency, and tomato yield.

Three recycling methods—"no stir/sift-then-disinfect", "stir-then-disinfect", and "sift-then-disinfect"—were put to the test for Hanna's experiments. Each recycling method consisted of two components: the reconditioning action and the hot water treatment. During the experiments, perlite recycled with the no stir/sift-then-disinfect method was not reconditioned before the hot water treatment. Instead, it was agitated with a nozzle mounted on a pressure washer wand during the hot water treatment. Perlite recycled with the stir-then-disinfect method was reconditioned first with an auger mounted on an electric drill, then treated with hot water. Perlite recycled with the sift-then-disinfect method was reconditioned first by sifting the perlite with a homemade apparatus, then treated with hot water.

"The results revealed that recycling perlite with the no stir/sift-then-disinfect method reduced labor input by 49% and 81% compared with the stir-then-disinfect and the sift-then-disinfect methods, respectively. The no stir/sift-then-disinfect method reduced recycling cost by 22% and 50% compared with the other two methods, respectively", Hanna noted. Tomatoes grown in perlite recycled with any of the three methods produced similar marketable and cull yields and fruit weight.

The results showed that the no stir/sift-then-disinfect method is less time-consuming, more economical, and has no negative impact on yield. The new method gives greenhouse tomato growers more cost-effective options for recycling perlite while saving valuable natural resources.

"The cost of renting of a hot water pressure washer and a few miscellaneous items can be the only out-of-pocket expense for using this method. Additionally, the method eliminates labor time and effort to remove old medium from the greenhouse, transport it to a land fill or a vacant field for disposal, and fill other bags with new perlite", Hanna concluded.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

Michael W. Neff | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>