Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recently Discovered Microbe is Key Player in Climate Change

23.10.2014

Tiny soil microbes are among the world's biggest potential amplifiers of human-caused climate change, but whether microbial communities are mere slaves to their environment or influential actors in their own right is an open question.

Now, research by an international team of scientists from the U.S., Sweden and Australia, led by University of Arizona scientists, shows that a single species of microbe, discovered only very recently, is an unexpected key player in climate change.   

The findings, published in the journal Nature, should help scientists improve their simulations of future climate by replacing assumptions about the different greenhouse gases emitted from thawing permafrost with new understanding of how different communities of microbes control the release of these gases.  

Earlier this year, the international team discovered that a single species of microbe, previously undescribed by science, was prominent in permafrost soils in northern Sweden that have begun to thaw under the effect of globally rising temperatures.

Researchers suspected that it played a significant role in global warming by liberating vast amounts of carbon stored in permafrost soil close to the Arctic Circle in the form of methane, a powerful greenhouse gas trapping heat in the Earth's atmosphere. But the actual role of this microbe — assigned the preliminary name Methanoflorens stordalenmirensis, which roughly translates to "methane-bloomer from the Stordalen Mire" — was unknown.  

The new research nails down the role of the new microbe, finding that the sheer abundance of Methanoflorens, as compared to other microbial species in thawing permafrost, should help to predict their collective impact on future climate change.  

"If you think of the African savanna as an analogy, you could say that both lions and elephants produce carbon dioxide, but they eat different things," said senior author Scott Saleska, an associate professor in the UA’s Department of Ecology and Evolutionary Biology and director of the UA's new Ecosystem Genomics Institute. "In Methanoflorens, we discovered the microbial equivalent of an elephant, an organism that plays an enormously important role in what happens to the whole ecosystem." 

Significantly, the study revealed that because of these microbial activities, all wetlands are not the same when it comes to methane release.  

"The models assume a certain ratio between different forms, or isotopes, of the carbon in the methane molecules, and the actual recorded ratio turns out to be different," said lead author Carmody McCalley, a scientist at the Earth Systems Research Center at the University of New Hampshire who conducted the study while she was a postdoctoral researcher at UA. "This has been a major shortcoming of current climate models. Because they assume the wrong isotope ratio coming out of the wetlands, the models overestimate carbon released by biological processes and underestimate carbon released by human activities such as fossil-fuel burning."

Soil microbes can make methane two different ways: either from acetate, an organic molecule that comes from plants, or from carbon dioxide and hydrogen.  

"Both processes produce energy for the microbe, and the microbe breathes out methane like we breathe out carbon dioxide," McCalley said. "But we find that in thawing permafrost, most methane initially doesn't come from acetate as previously assumed, but the other pathway. This ratio then shifts towards previous estimates as the frozen soils are turned into wetlands and acetate becomes the preferred carbon source."  

One of the big questions facing climate scientists, according to Saleska, is how much of the carbon stored in soils is released into the atmosphere by microbial activity. 

"As the 'global freezer' of permafrost is failing under the influence of warming, we need to better understand how soil microbes release carbon on a larger, ecosystem-wide level and what is going to happen with it," he said. 

"For years, there's been a debate about whether microbial ecology 'matters' to what an ecosystem collectively does — in this case, releasing greenhouse gases of different forms — or whether microbes are just slaves to the system’s physics and chemistry," said co-author Virginia Rich, who has joint appointments in the departments of Soil, Water and Environmental Science (UA College of Agriculture and Life Sciences), Ecology and Evolutionary Biology and Molecular and Cellular Biology (both UA College of Science)." This work shows that microbial ecology matters to a great degree, and that we need to pay more attention to the types of microbes living in those thawing ecosystems." 

Added McCalley: "By taking microbial ecology into account, we can accurately set up climate models to identify how much methane comes from thawing permafrost versus other sources such as fossil-fuel burning." 

The paper was co-authored by: Richard Wehr in the UA's Department of Ecology and Evolutionary Biology; Eun-Hae Kim in the UA Department of Soil, Water and Environmental Science; Gene Tyson, Ben Woodcroft and Rhiannon Mondav of the University of Queensland in Brisbane, Australia; Suzanne Hodgkins and Jeffrey Chanton of Florida State University; and Patrick Crill at the University of Stockholm, Sweden.  

The research was supported by the Department of Energy Office of Biological and Environmental Research through awards DE-SC0004632 and DE-SC0010580, and by the UA Technology and Research Initiative Fund through the Water, Environmental and Energy Solutions initiative.  

The research paper is available online at http://www.nature.com/nature/journal/v514/n7523/full/nature13798.html  

Contacts

Source contacts: 

Scott Saleska (University of Arizona): saleska@email.arizona.edu 

Virginia Rich (University of Arizona): vrich@email.arizona.edu 

Carmody McCalley (University of New Hampshire): Carmody.McCalley@unh.edu 

Media contact: 

Daniel Stolte: stolte@email.arizona.edu; 520-626-4402

Daniel Stolte | UANews
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>