Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid growth in adolescence leads to fewer offspring, UC Riverside biologists find

21.07.2010
Study on guppies sheds light on long-term costs of early rapid growth and weight gain

University of California, Riverside biologists working on guppies – small freshwater fish that have been the subject of long-term studies – report that rapid growth responses to increased food availability after a period of growth restriction early in life have repercussions in adulthood.

Based on their experiments, the biologists found that female guppies that grew rapidly as juveniles produced fewer offspring than usual.

Study results appear in the August issue of Ecology Letters.

"When food levels increase after a period of low availability, many organisms – including humans – undergo what is called 'catch-up' or compensatory growth," explained Sonya Auer, the first author of the research paper and a Ph.D. graduate student in the Department of Biology. "This accelerated growth response allows them to catch up, fully or in part, to the body size they would have achieved under more favorable food conditions.

"We found that female guppies that underwent compensatory growth as juveniles produced less offspring than would be expected for their body size relative to females that underwent normal growth as juveniles," she said. "In the ecological literature, however, theory and empirical research have assumed that juvenile compensatory growth has only a positive effect on reproduction – being bigger is better."

"This study is of interest even for human biology," said David Reznick, a professor of biology and Auer's advisor, "because we want to know if there are any such long-term consequences for rapid growth and weight gain early in life."

Auer explained that low early food availability alone does not have negative effects on future reproductive success in guppies.

"The long-term costs to reproduction we observed in our experiments appear to result from the compensatory growth response," she said.

She offered possible explanations for these results: The compensatory growth phase could be interfering with the development of reproductive structures. It could also negatively affect reproduction if it increases metabolic needs and thereby decreases the amount of energy available for reproduction.

"Our research helps us to better understand how organisms – including humans – respond to changes in their environment, such as food availability, and what the consequences of those responses are," she said.

Results from the study may have important implications for human reproductive success.

"Scientists have known that low birth weight and subsequent compensatory growth in humans lead to juvenile and adult obesity," Auer said. "Adult obesity is linked to problems such as type 2 diabetes. Type 2 diabetes has been linked to problems in pregnancy. However, to my knowledge, no direct link between juvenile compensatory growth and reproduction has been demonstrated until now."

The research was supported by a University of California Dissertation Research Grant, a National Science Foundation Graduate Research Fellowship to Auer and grants from the National Science Foundation to Reznick.

Auer and Reznick were joined in the research by Jeffrey D. Arendt, a research associate, and Radhika Chandramouli, an undergraduate, who work in Reznick's lab.

Study details: To study the long-term effects of juvenile compensatory growth on later reproduction, the researchers compared different components of reproduction between female guppies that underwent compensatory growth as juveniles (called experimental females) with females that underwent normal, routine growth (called control females). To initiate the compensatory growth response, they placed young guppies on low food for two weeks followed by a return to normal food levels. They measured the guppies' compensatory growth response and then examined effects on reproduction. They looked at effects on the rate of reproduction (how frequently they produced a litter), the size of the offspring as well as the number of offspring they produced in each litter. They looked at effects of reproduction on the first four litters, the first litter being produced at around 60 days of age and subsequent litters being produced every three weeks thereafter.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>