Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid growth in adolescence leads to fewer offspring, UC Riverside biologists find

21.07.2010
Study on guppies sheds light on long-term costs of early rapid growth and weight gain

University of California, Riverside biologists working on guppies – small freshwater fish that have been the subject of long-term studies – report that rapid growth responses to increased food availability after a period of growth restriction early in life have repercussions in adulthood.

Based on their experiments, the biologists found that female guppies that grew rapidly as juveniles produced fewer offspring than usual.

Study results appear in the August issue of Ecology Letters.

"When food levels increase after a period of low availability, many organisms – including humans – undergo what is called 'catch-up' or compensatory growth," explained Sonya Auer, the first author of the research paper and a Ph.D. graduate student in the Department of Biology. "This accelerated growth response allows them to catch up, fully or in part, to the body size they would have achieved under more favorable food conditions.

"We found that female guppies that underwent compensatory growth as juveniles produced less offspring than would be expected for their body size relative to females that underwent normal growth as juveniles," she said. "In the ecological literature, however, theory and empirical research have assumed that juvenile compensatory growth has only a positive effect on reproduction – being bigger is better."

"This study is of interest even for human biology," said David Reznick, a professor of biology and Auer's advisor, "because we want to know if there are any such long-term consequences for rapid growth and weight gain early in life."

Auer explained that low early food availability alone does not have negative effects on future reproductive success in guppies.

"The long-term costs to reproduction we observed in our experiments appear to result from the compensatory growth response," she said.

She offered possible explanations for these results: The compensatory growth phase could be interfering with the development of reproductive structures. It could also negatively affect reproduction if it increases metabolic needs and thereby decreases the amount of energy available for reproduction.

"Our research helps us to better understand how organisms – including humans – respond to changes in their environment, such as food availability, and what the consequences of those responses are," she said.

Results from the study may have important implications for human reproductive success.

"Scientists have known that low birth weight and subsequent compensatory growth in humans lead to juvenile and adult obesity," Auer said. "Adult obesity is linked to problems such as type 2 diabetes. Type 2 diabetes has been linked to problems in pregnancy. However, to my knowledge, no direct link between juvenile compensatory growth and reproduction has been demonstrated until now."

The research was supported by a University of California Dissertation Research Grant, a National Science Foundation Graduate Research Fellowship to Auer and grants from the National Science Foundation to Reznick.

Auer and Reznick were joined in the research by Jeffrey D. Arendt, a research associate, and Radhika Chandramouli, an undergraduate, who work in Reznick's lab.

Study details: To study the long-term effects of juvenile compensatory growth on later reproduction, the researchers compared different components of reproduction between female guppies that underwent compensatory growth as juveniles (called experimental females) with females that underwent normal, routine growth (called control females). To initiate the compensatory growth response, they placed young guppies on low food for two weeks followed by a return to normal food levels. They measured the guppies' compensatory growth response and then examined effects on reproduction. They looked at effects on the rate of reproduction (how frequently they produced a litter), the size of the offspring as well as the number of offspring they produced in each litter. They looked at effects of reproduction on the first four litters, the first litter being produced at around 60 days of age and subsequent litters being produced every three weeks thereafter.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>