Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid growth in adolescence leads to fewer offspring, UC Riverside biologists find

21.07.2010
Study on guppies sheds light on long-term costs of early rapid growth and weight gain

University of California, Riverside biologists working on guppies – small freshwater fish that have been the subject of long-term studies – report that rapid growth responses to increased food availability after a period of growth restriction early in life have repercussions in adulthood.

Based on their experiments, the biologists found that female guppies that grew rapidly as juveniles produced fewer offspring than usual.

Study results appear in the August issue of Ecology Letters.

"When food levels increase after a period of low availability, many organisms – including humans – undergo what is called 'catch-up' or compensatory growth," explained Sonya Auer, the first author of the research paper and a Ph.D. graduate student in the Department of Biology. "This accelerated growth response allows them to catch up, fully or in part, to the body size they would have achieved under more favorable food conditions.

"We found that female guppies that underwent compensatory growth as juveniles produced less offspring than would be expected for their body size relative to females that underwent normal growth as juveniles," she said. "In the ecological literature, however, theory and empirical research have assumed that juvenile compensatory growth has only a positive effect on reproduction – being bigger is better."

"This study is of interest even for human biology," said David Reznick, a professor of biology and Auer's advisor, "because we want to know if there are any such long-term consequences for rapid growth and weight gain early in life."

Auer explained that low early food availability alone does not have negative effects on future reproductive success in guppies.

"The long-term costs to reproduction we observed in our experiments appear to result from the compensatory growth response," she said.

She offered possible explanations for these results: The compensatory growth phase could be interfering with the development of reproductive structures. It could also negatively affect reproduction if it increases metabolic needs and thereby decreases the amount of energy available for reproduction.

"Our research helps us to better understand how organisms – including humans – respond to changes in their environment, such as food availability, and what the consequences of those responses are," she said.

Results from the study may have important implications for human reproductive success.

"Scientists have known that low birth weight and subsequent compensatory growth in humans lead to juvenile and adult obesity," Auer said. "Adult obesity is linked to problems such as type 2 diabetes. Type 2 diabetes has been linked to problems in pregnancy. However, to my knowledge, no direct link between juvenile compensatory growth and reproduction has been demonstrated until now."

The research was supported by a University of California Dissertation Research Grant, a National Science Foundation Graduate Research Fellowship to Auer and grants from the National Science Foundation to Reznick.

Auer and Reznick were joined in the research by Jeffrey D. Arendt, a research associate, and Radhika Chandramouli, an undergraduate, who work in Reznick's lab.

Study details: To study the long-term effects of juvenile compensatory growth on later reproduction, the researchers compared different components of reproduction between female guppies that underwent compensatory growth as juveniles (called experimental females) with females that underwent normal, routine growth (called control females). To initiate the compensatory growth response, they placed young guppies on low food for two weeks followed by a return to normal food levels. They measured the guppies' compensatory growth response and then examined effects on reproduction. They looked at effects on the rate of reproduction (how frequently they produced a litter), the size of the offspring as well as the number of offspring they produced in each litter. They looked at effects of reproduction on the first four litters, the first litter being produced at around 60 days of age and subsequent litters being produced every three weeks thereafter.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>