Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" Plastics Could Help Reduce Carbon Footprint

13.02.2009
MU researchers working toward making biodegradable plastics from plants a reality

More than 20 million tons of plastic are placed in U.S. landfills each year. Results from a new University of Missouri study suggest that some of the largely petroleum-based plastic may soon be replaced by a nonpolluting, renewable plastic made from plants. Reducing the carbon footprint and the dependence on foreign oil, this new 'green' alternative may also provide an additional cash crop for farmers.

"Making plastics from plants is not a new idea," said Brian Mooney, research assistant professor of biochemistry with the MU Interdisciplinary Plant Group. "Plastics made from plant starch and soy protein have been used as an alternative to petroleum-based plastics for a while. What is relatively new - and exciting - is the idea of using plants to actually grow plastics."

By employing a number of modern molecular techniques, scientists are able to introduce three bacterial enzymes into the model plant Arabidopsis thaliana. When combined with two enzymes from the plant, an organic polymer is produced. The polymer, known as polyhdroxybutyrate-co-polyhydroxyvalerate, or PHBV, is a flexible and moldable plastic that can be used to produce a wide range of products, such as grocery bags, soda bottles, disposable razors and flatware. When discarded, the plastic is naturally degraded into water and carbon dioxide by bacteria in the soil.

"Of the two plant enzymes that supply the chemical precursors for PHBV, one is produced in the mitochondria. Recently, we’ve successfully modified plants so that this enzyme is diverted to the chloroplast, which has been defined as the best place in the plant to produce PHBV," said Mooney, who is also associate director of the Charles Gehrke Proteomics Center in the MU Christopher S. Bond Life Sciences Center. "We also confirmed that a stable, functional complex is formed."

These recent advances potentially remove two of the remaining technological hurdles limiting the ability of companies from turning acres of weeds into plastic factories. The next step, said Mooney, is to see if the technique works in 'real' plants, such as switchgrass. Mooney along with Douglas Randall, professor of biochemistry at MU, have already initiated conversations with scientists at the Donald Danforth Plant Science Center in St. Louis, Mo., and the Cambridge, Mass.- based, environmental tech company Metabolix Inc.

Metabolix and the Danforth Center were recently awarded a $1.14 million grant from the Missouri Technology Corporation to produce a "double-crop" that would produce both a bioplastic and an oil for biodiesel refineries. Metabolix has already successfully produced one form of biodegradable plastic in switchgrass, but yield is too low. MU researchers hope their advances will lead to higher yield of a more useable plastic.

Mooney reviews the production of biodegradable plastics in "The second green revolution? Production of plant-based biodegradable plastics," which appears in the latest issue of BJ Plant.

Melody Kroll | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>