Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting drinking water systems from deliberate contamination

05.07.2013
An international project has developed a response programme for rapidly restoring the use of drinking water networks following a deliberate contamination event.

The importance of water and of water infrastructures to human health and to the running of our economy makes water systems likely targets for terrorism and CBRN (chemical, biological and radionuclide) contamination. Reducing the vulnerability of drinking water systems to deliberate attacks is one of the main security challenges.


This is biofilm on a metal coupon which has been immersed in drinking water.

Credit: University of Southampton

SecurEau, a four-year Seventh Framework Programme funded project, involved 12 partners, including the University of Southampton, from six European countries. It has developed a toolbox that can be implemented by a major European city in response to a contamination event, which includes:

•tools for detecting water quality changes;
•methods for rapidly identifying the source(s) of intentional contamination;
•multi-step strategies for cleaning distribution systems;
•analytical methods for confirming cleaning procedure efficiency.
Research groups from the University of Southampton, the only UK partner in the project, developed new methods and technologies for detecting low levels of microbial and radiological contaminants and improving the efficiency of decontamination protocols, with special attention to the role of biofilms.

The SecurEau team developed water quality sensors to be installed in a drinking water system, which allows an alert to be issued rapidly when abrupt changes in the quality of water are detected. These were confirmed by development of specific molecular tools by Southampton and several other partners.

The team also developed 'sentinel coupons' of polymeric materials (HDPE, EDPME, etc.) to be installed in water distribution systems for deposits and biofilms to form on their inner surface. The coupons would be installed in the water supply system to monitor the concentration of the pollutant absorbed onto the like pipe walls. They would then be used to validate the cleaning procedures applied throughout the network during the crisis phase but also during 'normal' operation of the network.

Project partners also developed mathematical models to determine the areas which have been contaminated and the sources of contamination, and various cleaning methods, both traditional and new ones, to be applied to decontaminate the network.

Professor Bill Keevil, Director of Environmental Healthcare at the University of Southampton, says: "If a contamination event (accidental or deliberate) occurs in a drinking water network, it is essential to identify the sources of contamination and to determine the area which is likely to be contaminated, in order to isolate and decontaminate the affected area only, as well as keep supplying drinking water in non-affected areas.

"Our experiments show that coupon-monitoring devices are suited to follow deposit / biofilm formation in drinking water distribution systems as well as to investigate and confirm the successful removal of deposits from surfaces."

Professor Ian Croudace, Director of the University's Geosciences Advisory Unit, adds: "Rapidly restoring the functionality of drinking water infrastructures (catchment areas, raw water transfer systems, treatment facilities, treated water reservoirs and distribution networks), and the access to safe drinking water represents another major concern for regulatory agencies and water utilities. Indeed, the damage resulting from impairment of drinking water services would seriously impact the quality of life of many people not only by directly harming them but also making water systems unusable for a long period of time with a risk of societal disorder (similar situation as with any accidental contamination events or natural disasters)."

This research has led to publication of a guide for end users and disseminated via a three day workshop in Germany involving 150 participants from 26 countries.

Further information is available from the project website http://www.secureau.eu

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>