Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting drinking water systems from deliberate contamination

05.07.2013
An international project has developed a response programme for rapidly restoring the use of drinking water networks following a deliberate contamination event.

The importance of water and of water infrastructures to human health and to the running of our economy makes water systems likely targets for terrorism and CBRN (chemical, biological and radionuclide) contamination. Reducing the vulnerability of drinking water systems to deliberate attacks is one of the main security challenges.


This is biofilm on a metal coupon which has been immersed in drinking water.

Credit: University of Southampton

SecurEau, a four-year Seventh Framework Programme funded project, involved 12 partners, including the University of Southampton, from six European countries. It has developed a toolbox that can be implemented by a major European city in response to a contamination event, which includes:

•tools for detecting water quality changes;
•methods for rapidly identifying the source(s) of intentional contamination;
•multi-step strategies for cleaning distribution systems;
•analytical methods for confirming cleaning procedure efficiency.
Research groups from the University of Southampton, the only UK partner in the project, developed new methods and technologies for detecting low levels of microbial and radiological contaminants and improving the efficiency of decontamination protocols, with special attention to the role of biofilms.

The SecurEau team developed water quality sensors to be installed in a drinking water system, which allows an alert to be issued rapidly when abrupt changes in the quality of water are detected. These were confirmed by development of specific molecular tools by Southampton and several other partners.

The team also developed 'sentinel coupons' of polymeric materials (HDPE, EDPME, etc.) to be installed in water distribution systems for deposits and biofilms to form on their inner surface. The coupons would be installed in the water supply system to monitor the concentration of the pollutant absorbed onto the like pipe walls. They would then be used to validate the cleaning procedures applied throughout the network during the crisis phase but also during 'normal' operation of the network.

Project partners also developed mathematical models to determine the areas which have been contaminated and the sources of contamination, and various cleaning methods, both traditional and new ones, to be applied to decontaminate the network.

Professor Bill Keevil, Director of Environmental Healthcare at the University of Southampton, says: "If a contamination event (accidental or deliberate) occurs in a drinking water network, it is essential to identify the sources of contamination and to determine the area which is likely to be contaminated, in order to isolate and decontaminate the affected area only, as well as keep supplying drinking water in non-affected areas.

"Our experiments show that coupon-monitoring devices are suited to follow deposit / biofilm formation in drinking water distribution systems as well as to investigate and confirm the successful removal of deposits from surfaces."

Professor Ian Croudace, Director of the University's Geosciences Advisory Unit, adds: "Rapidly restoring the functionality of drinking water infrastructures (catchment areas, raw water transfer systems, treatment facilities, treated water reservoirs and distribution networks), and the access to safe drinking water represents another major concern for regulatory agencies and water utilities. Indeed, the damage resulting from impairment of drinking water services would seriously impact the quality of life of many people not only by directly harming them but also making water systems unusable for a long period of time with a risk of societal disorder (similar situation as with any accidental contamination events or natural disasters)."

This research has led to publication of a guide for end users and disseminated via a three day workshop in Germany involving 150 participants from 26 countries.

Further information is available from the project website http://www.secureau.eu

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>