Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protected areas face threats in sustaining biodiversity, Penn's Daniel Janzen and colleagues report

Establishing protection over a swath of land seems like a good way to conserve its species and its ecosystems.

But in a new study, University of Pennsylvania biologist Daniel Janzen joins more than 200 colleagues to report that protected areas are still vulnerable to damaging encroachment, and many are suffering from biodiversity loss.

"If you put a boundary around a piece of land and install some bored park guards and that's all you do, the park will eventually die," said Janzen, DiMaura Professor of Conservation Biology in Penn's Department of Biology. "It's death from a thousand cuts."

The international team of researchers, led by William Laurance of Australia's James Cook University, conducted 262 interviews of field biologists and environmental scientists who had extensive experience working in tropical forest reserves. In all, the interviews incorporated results from 60 protected areas in 36 countries.

The researchers constructed questions to determine how the biological health of the protected areas had changed over the last two to three decades. Some queries dealt with the status of wildlife in the areas: Had large mammal or amphibian populations increased or decreased over that time period? Others asked about changes in environmental pressures: Were fires more frequent or had automobile traffic expanded?

Writing in the journal Nature, the researchers report that the protected forest areas are not serving as the "arks" that some conservationists had hoped for. Four-fifths of the areas included in the survey had experienced some declines in health. About half of the areas had suffered more serious losses to biodiversity.

Among the types of wildlife and plants most negatively affected were bats, amphibians, lizards, large-bodied mammals, stream-dwelling fish, amphibians and old-growth trees. And the researchers did not even attempt to monitor insects, fungi and other small organisms.

The scientists further observed that environmental conditions and activities occurring outside of the reserves were strong predictors of how biodiversity inside the boundaries fared. Logging, declining forest cover and increasing fires outside the protected areas tended to pull down the health of the reserves themselves. Such losses were rampant: Eight-five percent of the reserves had their surrounding forests decline in the last few decades, while only two percent had bordering forestland increase.

When Janzen and his wife and research partner, Winnie Hallwachs, became advisors for and supporters of Costa Rica's Área de Conservación Guanacaste in 1985, they worked to ensure the national park would not succumb to such threats.

Janzen said that many of the features that he and Hallwachs incorporated into the park's design are "obvious": making it socially integrated by hiring only local workers, gaining political support by winning the blessing of the Costa Rican president and incorporating habitat into the park's boundaries that will allow species to cope with climate change.

The park, which was included in the survey, is one of those protected areas holding up well on many markers of health and biodiversity — even improving on many measures since the 1980s.

"We're atypical," Janzen said. "We used to have 100 to 200 fires a year and within two to three years [of management] we were down to five to 15."

And while many protected areas have found their borders slowly chipped away by development and human encroachment, Janzen said Área de Conservación Guanacaste has "the opposite issue: the size of the original park was 10,000 hectares; right now it's 163,000 hectares, so 16 times as big as when we started."

The challenge, he said, is often acquiring the political and economic will to enact sustainable management and stave off threats from development and human activity in protected areas. And conservationists can't take a cookie-cutter approach to designing and managing protected areas, Janzen said.

"You have to fine-tune and tailor-make your park to the particular circumstances of a place: the nature of the people, the resources and the organisms."

The study authors noted that although their findings suggest that many protected areas are in trouble, their intent is not "to diminish their crucial role but to highlight growing challenges that could threaten their success."

The research was supported by James Cook University, the Smithsonian Tropical Research Institute, the Australian Research Council and the National Science Foundation.

Katherine Unger Baillie | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>