Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protected areas in East Africa may not be conserving iconic plants

08.11.2012
A new study led by researchers from the University of York suggests protected areas in East Africa are not conserving plants such as the iconic Acacia tree.
Acacia, the thorny flat-topped tree that characterises the African savannas, is an important component of ecosystem diversity. However, the researchers found that the majority of Acacia biodiversity 'hotspots' receive little protection through the protected area network, which includes national parks, nature and forest reserves. The situation, they say, may be exacerbated by climate change.

The results of the study, which was led by researchers from the Environment Department's Institute for Tropical Ecosystem Dynamics (KITE) and Centre for the Integration of Research Conservation and Learning (CIRCLE), and involved the Missouri Botanical Garden (St Louis, USA) and the East African Herbarium (Nairobi, Kenya), are published in the journal Plant Ecology and Evolution.

The researchers found that two thirds of Acacia diversity hotspots had less than 10 per cent coverage by protected areas. They also conclude that due to climate change, high-elevation, moisture-dependent species of Acacia may contract their ranges towards mountain peaks, where protected areas are dominated by forest reserves. These areas provide only a low level of protection compared to national parks and nature reserves.

Dr Andy Marshall, from the University's Environment Department and Director of Conservation Science at Flamingo Land Theme Park and Zoo, said: "The Acacia is one of Africa's most iconic groups of trees, but our data suggest protected areas such as national parks do not really conserve them. This is most likely because most protected areas were originally established to protect big game rather than to protect biodiversity and plants."

"Our data suggest that if we were to take the existing protected areas and place them completely at random across the area, we would get a better coverage of Acacia diversity than the current distribution."

Principal Investigator Dr Rob Marchant, also from York's Environment Department, said: "Plants have long been over-looked in the design of protected area systems despite their role as the foundation of all terrestrial ecosystems, harnessing the Sun's energy and providing nutrients for the entire food chain.

"As conservation continues to develop a 'biodiversity for livelihoods' mandate, information on plant distributions and the ways in which ecosystems will respond to future climatic and economic developments is crucial."

Acacia includes a number of species that dominate extensive areas of East African woodland, wooded grassland and bushland. It occurs across a wide range of ecosystems, from arid deserts to mountain forests, and ranges from small shrubs to large trees.

The researchers used distribution modelling to predict the present day distribution of Acacia in East Africa and to establish how well members of the species are conserved under the current protected network. They also used regional climate forecasts to estimate the potential impact of climate change on two Acacia species of differing ecology, with one mountain species' range shrinking away from the highest designation of protected areas.

Dr Marshall said: "The question for managers is how best to deal with the potential mismatch between biodiversity and the current protected area network, both now and in the future. The strongest and most effective means of biodiversity conservation has consistently been in the establishment of protected areas.

"While new conservation efforts do not necessarily have to follow the traditional format of protected areas and should involve working closely with local people, the most important factor is that they are based on solid science underpinned by excellent data."

The research team are now carrying out ground surveys in remote and inhospitable locations to test the predictions of their work. The initial findings from these expeditions appear to agree with their predictions. A further publication is planned for 2013.

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>