Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protea plants help unlock secrets of species 'hotspots'

New species of flowering plants called proteas are exploding onto the scene three times faster in parts of Australia and South Africa than anywhere else in the world, creating exceptional 'hotspots' of species richness, according to new research published today in Proceedings of the National Academy of Sciences (PNAS).

Proteas are best known as the national symbol of South Africa. The international team behind today's new study created an evolutionary 'family tree' of all 2,000 protea plant species on Earth - the majority of which are found in South Western Australia (SWA) and the Cape Floristic Region (CFR) of South Africa. This 'family tree' enabled the researchers to examine how these and other regions of the planet with Mediterranean-style climates have become so-called 'biodiversity hotspots'.

Until now, scientists have not known exactly why such large numbers of plant and animal species live in these Mediterranean hotspots. They are places of significant conservational importance which, like the rainforests, contain some of the richest and most threatened communities of plant and animal life on Earth.

The research published today provides the first conclusive proof that plant species in two of these hotspots are evolving approximately three times faster than elsewhere on the planet. The study dates this surge in protea speciation as occurring in the last 10-20 million years, following a period of climate change during which SWA and the CFR became hotter, drier, and more prone to vegetation fires.

Dr Vincent Savolainen, a biologist based at Imperial College London and the Royal Botanic Gardens, Kew, one of the authors of the new study, explains its significance, saying:

"Something special is happening in these regions: new species of proteas are appearing notably faster than elsewhere, and we suspect this could be the same case with other plant species too. This study proves that the abundance of different kinds of proteas in these two areas isn't simply due to normal rates of species diversification occurring over a long period of time.

"This is the first step towards understanding why some parts of the planet with a Mediterranean-style climate have become species-rich biodiversity hotspots."

Dr Savolainen and his colleagues believe that climatic changes millions of years ago could be one of the factors that prompted the protea plants' 'hyperdiversification' in SWA and the CFR. As these two regions became hotter, dryer, and prone to seasonal fires, proteas - which are drought-resistant and able to re-grow easily after a fire - would have survived, thrived and diversified into new species when faced with less competition for resources from less hardy plants.

Dr Savolainen concludes: "South Western Australia and the Cape Floristic Region of South Africa are areas of great interest to both evolutionary biologists and conservationists, because they contain such a rich profusion of life but are under threat from mankind's activities.

"Understanding more about the evolutionary history of these biodiversity 'hotspots' is important because it can help make conservation efforts more efficient."

Proteas live in the southern hemisphere and come in many different shapes and sizes, from 35-metre-tall trees to low growing shrubs. All proteas have leathery leaves and cup-shaped groupings of small, brightly coloured flowers that resemble thistles.

The Cape Floristic Region of South Africa and South Western Australia are two of five areas on Earth with a Mediterranean-style climate which have been designated 'biodiversity hotspots' by Conservation International. The others are: central Chile, California, and the mediterranean basin.

Danielle Reeves | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>