Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the prospects for sustaining high-quality groundwater?

20.12.2011
Intensive agriculture practices developed during the past century have helped improve food security for many people but have also added to nitrate pollution in surface and groundwaters. New research has looked at water quality measurement over the last 140 years to track this problem in the Thames River basin.

The NERC-funded study, led by the University of Bristol's Department of Civil Engineering, has looked at nitrate transport from agricultural land to water in the Thames basin. The team used a simple model to estimate the amount of nitrate able to leach from soils to the groundwater based on land use practices along with an algorithm that determined the route nitrate would take to reach surface or groundwater from agricultural areas.

The Thames River catchment provides a good study example because the water quality in the river, which supplies drinking water to millions of people, has been monitored for the past 140 years, and the region has undergone significant agricultural development over the past century.

The study found that nitrate concentrations in the Thames rose significantly during and after World War II to about double their previous level, then increased again in the early 1970s. Nitrite concentrations have remained at that high level even though nitrate from inputs from agriculture declined from the late 1970s to early 2000s.

The researchers observed it takes some time for nitrate to reach the river, and their analysis suggests that the jump in nitrate concentrations from 1968 to 1972 is due to the delayed groundwater response to ploughing of permanent grasslands during World War II.

Dr Nicholas Howden, Senior Lecturer in Water in the Department of Civil Engineering, who led the research, said: "Balancing the needs for agriculture and clean groundwater for drinking requires understanding factors such as the routes by which nitrate enters the water supply and how long it takes to get there.

"Our results suggest it could take several decades for any reduction in nitrate concentrations of river water and groundwater, following significant change in land management practices."

Co-author of the research paper, Dr Fred Worrall in the Department of Earth Sciences at Durham University, added: "The 60s and 70s saw a gradual intensification of food crop production and consequent nitrate release from the land. If your input is dispersed, your output is dispersed; if your input is sharp, your output is sharp. The aquifer is just transporting it; it's not processing it. The nitrate comes through as a pulse."

Co-author, Professor Tim Burt in the Department of Geography at Durham University, said: "You can work out the budget, and there is a phenomenal amount of nitrogen accumulating somewhere in the Thames basin. We don't know where and we don't know in what form, but it represents a potential legacy for a long time. The effects of land-use changes can take decades to filter through the river basin and this has major implications for policies to manage rivers."

The researchers found that any solution to the nitrate issue will require a long-term vision for water-quality remediation. In terms of sustainable groundwater, there seem to be no ''quick fixes'' and if groundwater nitrate concentrations continue to rise in the UK the worst may be yet to come.

The study could help water and land management planners identify practices that best preserve both agricultural production and water quality.

Paper: Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?, Nicholas J K Howden, Tim P Burt, Fred Worrall, Simon Mathias, and Mick J Whelan, Water Resources Research, Vol 47, 12 November, 2011

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>