Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project to Save Endangered Tasmanian Devil

04.11.2008
University of Adelaide zoologist Dr Jeremy Austin will lead a national project to help save the endangered Tasmanian devil from extinction.

Dr Austin and colleagues from SA Zoos and the Tasmanian Government will spend the next three years establishing a conservation program and working to suppress the infectious cancer, devil facial tumour disease, which is ravaging Australia’s largest living marsupial carnivore.

The Tasmanian devil is not only a key tourism icon for Australia’s most southern State, but also ecologically critical to Tasmania’s native ecosystem.

“Extinction of the species is a possibility within the next two decades unless disease spread can be stopped,” says Dr Austin.

Because Tasmanian devils have extremely low levels of genetic diversity and a chromosomal mutation unique among carnivorous mammals, they are more prone to the infectious cancer. Dr Austin’s team will analyse genetic material from devil populations to understand the origin, spread and impact of the disease and try to find a vaccine.

“We need to establish whether the low levels of genetic diversity are due to recent human impacts or a long-term historical pattern. We also need to look at how the cancer is affecting surviving populations and identify individuals that may be resistant to the disease.”

Tasmanian devils became extinct on the Australian mainland at least 400 years ago and are now found only in Tasmania. Unlike Tasmanian tigers, devils survived initial human impacts following European colonisation but in the past decade their numbers have fallen drastically.

“We have lost over half our devils in the past 10 years, with an estimated population of 20,000 to 50,000 mature devils left. Extinction within the next 20 years is a real possibility unless we find a vaccine, eradicate the disease and establish captive colonies,” Dr Austin says.

Devil facial tumour disease is one of only two known clonally transmissible cancers and appears to have originated from a genetic change of mutation in a single individual. It is spread through biting, without any evidence of recovery or resistance to the disease.

The project, which has received $168,000 from the Federal Government, combines ancient DNA methods and modern genetic procedures to examine the impact of the disease on Tasmanian devils.

Dr Jeremy Austin, ARC Senior Research Associate
School of Earth & Environmental Sciences
University of Adelaide
Business: +61 8 8303 4557
Mobile: +61 0404 198 493

Dr Jeremy Austin | Newswise Science News
Further information:
http://www.adelaide.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>