Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Project to Save Endangered Tasmanian Devil

University of Adelaide zoologist Dr Jeremy Austin will lead a national project to help save the endangered Tasmanian devil from extinction.

Dr Austin and colleagues from SA Zoos and the Tasmanian Government will spend the next three years establishing a conservation program and working to suppress the infectious cancer, devil facial tumour disease, which is ravaging Australia’s largest living marsupial carnivore.

The Tasmanian devil is not only a key tourism icon for Australia’s most southern State, but also ecologically critical to Tasmania’s native ecosystem.

“Extinction of the species is a possibility within the next two decades unless disease spread can be stopped,” says Dr Austin.

Because Tasmanian devils have extremely low levels of genetic diversity and a chromosomal mutation unique among carnivorous mammals, they are more prone to the infectious cancer. Dr Austin’s team will analyse genetic material from devil populations to understand the origin, spread and impact of the disease and try to find a vaccine.

“We need to establish whether the low levels of genetic diversity are due to recent human impacts or a long-term historical pattern. We also need to look at how the cancer is affecting surviving populations and identify individuals that may be resistant to the disease.”

Tasmanian devils became extinct on the Australian mainland at least 400 years ago and are now found only in Tasmania. Unlike Tasmanian tigers, devils survived initial human impacts following European colonisation but in the past decade their numbers have fallen drastically.

“We have lost over half our devils in the past 10 years, with an estimated population of 20,000 to 50,000 mature devils left. Extinction within the next 20 years is a real possibility unless we find a vaccine, eradicate the disease and establish captive colonies,” Dr Austin says.

Devil facial tumour disease is one of only two known clonally transmissible cancers and appears to have originated from a genetic change of mutation in a single individual. It is spread through biting, without any evidence of recovery or resistance to the disease.

The project, which has received $168,000 from the Federal Government, combines ancient DNA methods and modern genetic procedures to examine the impact of the disease on Tasmanian devils.

Dr Jeremy Austin, ARC Senior Research Associate
School of Earth & Environmental Sciences
University of Adelaide
Business: +61 8 8303 4557
Mobile: +61 0404 198 493

Dr Jeremy Austin | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>