Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New progress in soil ecology

Soil protection has become a priority of the European Union. The loss of organic matter is one of the various threats to the soils that have been identified by the European Commission.

Agricultural soils as well as mountain soils are implicated; they are veritable carbon sinks, which, under the impact of climate warming, could become sources greenhouse gas emissions. Near-infrared spectroscopy is a very promising avenue able to quantify the build-up of carbon in the soils at a large scale.

The capacity of plants to store carbon dioxide emitted in the atmosphere via photosynthesis is well known. But did you know that soils are veritable natural carbon sinks? Consequently, forest soils contain the largest terrestrial reserves on the planet. Carbon is stored there in a more or less sustainable fashion in the form of organic matter: microflora, soil wildlife, roots and plant debris, organic labile residue (sugars, cellulose) and more stable molecules (lignin, tannin, humines).

However, in a context of climate warming, these carbon stocks decompose, emitting large amounts of carbon dioxide and methane, two greenhouse gases. At Cemagref, the aim of an ongoing doctoral thesis conducted in a partnership with ADEME is to develop a simple and cost-effective tool to quantify organic carbon storage in soils. Upstream, this work come within the future European Framework Directive on soil protection with one of the priorities being to make a list of the soils at risk in Europe.

- A global understanding of the process.

In the mountains, the storage of organic carbon is favoured by the temperature and moisture conditions of the environment and by the characteristics of the litter. To study the impacts of these different parameters, Lauric Cécillon’s research was conducted on a cold scree in a mid-altitude mountain area, located in the Southern Alps. A true field laboratory, this ecosystem shows highly contrasted micro-climate soil conditions and plants (pine trees, beech groves and fir forest, and an ecotone zone) simulating the long-term impacts of climate warming over a distance of a few hundred metres. This researcher first focused on the process controlling the build-up of organic matter in the soil. The decomposition process was studied by experiments with litter bags. The mass losses of these litter bags were measured over a lapse of time. The process of aggregation of the organic matter was monitored by the analysis of thin slices of soil and by the physico-chemical description of the particulate organic matter.

- Towards mountain soil mapping

In addition, this researcher has developed a new method for predicting the organic and microbial carbon stocks which favourably replaces the chemical methods of analysis. This method, based on near-infrared spectrometry, was developed on burnt soils, within the European IRISE project (see insert), then applied on approximately 1000 samples of mountain soil. In just a few minutes, the amount of organic carbon, total nitrogen, and microbial carbon, the bacterial activities of de-nitrification and potential nitrification, as well as two enzymes of soil degradation can be determined. This quick and reliable tool makes it possible to analyze a large number of samples cheaply, a significant advantage in the highly heterogeneous mountain environments. The aim of the next thesis will be to map carbon storage and soil quality at the scale of a natural preserve area located in the High Plateaux of the Vercors range.

- From burnt soils to mountain soils?

It is within the European project IRISE (Impact of Fire Repetition on the Environment) that Lauric Cécilion has developed the near-infrared spectrometry soil carbon measurement method. Like agricultural soils and mountain soils, burnt soils are threatened by a drop in their stock of organic matter. This tool can measure the impact of the repetition of the fires on the soil quality. The researcher has also shown that the spectrometric analysis of earthworm castings makes it possible to select the plots based on how long ago fires occurred. Finally, the technique made it possible to validate the positive action of earthworms on the build-up of organic carbon and nitrogen and the richness of the microbial flora in the soils after burning.

Marie Signoret | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>