Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Problem wells' source of greenhouse gas at unexpected stage of natural gas production

15.04.2014

High levels of the greenhouse gas methane were found above shale gas wells at a production point not thought to be an important emissions source, according to a study jointly led by Purdue and Cornell universities. The findings could have implications for the evaluation of the environmental impacts from natural gas production.


This shows a well pad in southwestern Pennsylvania. A Purdue and Cornell study found high levels of the greenhouse gas methane above shale gas wells during the drilling stage -- a production point not thought to be a significant emissions source.

Credit: (Photo courtesy of Dana Caulton)

The study, which is one of only a few to use a so-called "top down" approach that measures methane gas levels in the air above wells, identified seven individual well pads with high emission levels and established their stage in the shale-gas development process.

The high-emitting wells made up less than 1 percent of the total number of wells in the area and were all found to be in the drilling stage, a preproduction stage not previously associated with significant emissions.

"These findings present a possible weakness in the current methods to inventory methane emissions and the top-down approach clearly represents an important complementary method that could be added to better define the impacts of shale gas development," said Paul Shepson, a professor of chemistry and earth atmospheric and planetary sciences at Purdue who co-led the study with Jed Sparks, a professor of ecology and evolutionary biology at Cornell. "This small fraction of the total number of wells was contributing a much larger large portion of the total emissions in the area, and the emissions for this stage were not represented in the current inventories."

The researchers flew above the Marcellus shale formation in southwestern Pennsylvania in the Purdue Airborne Laboratory for Atmospheric Research, a specially equipped airplane. The aircraft-based approach allowed researchers to identify plumes of methane gas from single well pads, groups of well pads and larger regional scales and to examine the production state of the wells.

"It is particularly noteworthy that large emissions were measured for wells in the drilling phase, in some cases 100 to 1,000 times greater than the inventory estimates," Shepson said. "This indicates that there are processes occurring - e.g. emissions from coal seams during the drilling process - that are not captured in the inventory development process. This is another example pointing to the idea that a large fraction of the total emissions is coming from a small fraction of shale gas production components that are in an anomalous condition."

The bottom-up inventories have been produced from industry measurements of emissions from individual production, transmission and distribution components and then scaling up to create an estimate of emissions for the region. However, with thousands of wells, and a complex processing and transmission system associated with each shale basin, obtaining a representative data set is difficult, he said.

A paper detailing the results will be published in the Proceedings of the National Academy of Sciences on Monday (April 14). The David R. Atkinson Center for a Sustainable Future at Cornell University funded this research.

"We need to develop a way to objectively measure emissions from shale gas development that includes the full range of operator types, equipment states and engineering approaches," Shepson said. "A whole-systems approach to measurement is needed to understand exactly what is occurring."

###

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Source: Paul Shepson, 765-494-7441, pshepson@purdue.edu

PHOTO CAPTION: A well pad in southwestern Pennsylvania. A Purdue and Cornell study found high levels of the greenhouse gas methane above shale gas wells during the drilling stage - a production point not thought to be a significant emissions source. (Photo courtesy of Dana Caulton)

A publication-quality photo is available at http://www.purdue.edu/uns/images/2014/shepson-wellpad.jpg

PHOTO CAPTION: Researchers used the Purdue Airborne Laboratory for Atmospheric Research, a specially equipped airplane, to measure plumes of methane gas above shale gas wells in southwestern Pennsylvania. (Photo courtesy of Paul Shepson)

A publication-quality photo is available at http://www.purdue.edu/uns/images/2014/shepson-plane.jpg

ABSTRACT

Toward a Better Understanding and Quantification of Methane Emissions from Shale Gas Development
Dana R. Caulton, Paul Shepson, Renee L. Santoro, Jed P. Sparks, Robert W. Howarth, Anthony R. Ingraffea, Maria O. L. Cambaliza, Colm Sweeney, Anna Karion, Kenneth J. Davis, Brian H. Stirm, Stephen A. Montzka, and Ben R. Miller

The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0-14g CH4 s-1 km-2, was quantified for a ~2,800-km2 area, which did not differ statistically form a bottom-up inventory, 2.3-4.6 g CH4 s-1 km-2. Large emissions averaging 34 g CH4s-1 per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ~1% of the total number of wells, account for 4-30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.

Elizabeth K. Gardner | Eurek Alert!

Further reports about: EMISSIONS Sparks airplane emissions evolutionary biology gas greenhouse methane emissions

More articles from Ecology, The Environment and Conservation:

nachricht Wildlife Conservation Society Helps Safeguard Belize’s Barrier Reef with Conservation Drones
28.07.2014 | Wildlife Conservation Society

nachricht York U researchers use innovative bird ‘backpacks’ to put wood thrush migration on the map
24.07.2014 | York University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

9th European Wood-Based Panel Symposium 2014 – meeting point for the wood-based material branch

24.07.2014 | Event News

“Lens on Life” - Artists and Scientists Explore Cell Divison

08.07.2014 | Event News

First International Conference on Consumer Research | ICCR 2014: Early bird deadline July 31, 2014

08.07.2014 | Event News

 
Latest News

Female bonobos start up early

28.07.2014 | Life Sciences

First national study finds trees saving lives, reducing respiratory problems

28.07.2014 | Health and Medicine

Kidney transplant drug halves the early risk of rejection and allows less toxic treatment

28.07.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>