Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Problem wells' source of greenhouse gas at unexpected stage of natural gas production

15.04.2014

High levels of the greenhouse gas methane were found above shale gas wells at a production point not thought to be an important emissions source, according to a study jointly led by Purdue and Cornell universities. The findings could have implications for the evaluation of the environmental impacts from natural gas production.

The study, which is one of only a few to use a so-called "top down" approach that measures methane gas levels in the air above wells, identified seven individual well pads with high emission levels and established their stage in the shale-gas development process.


This shows a well pad in southwestern Pennsylvania. A Purdue and Cornell study found high levels of the greenhouse gas methane above shale gas wells during the drilling stage -- a production point not thought to be a significant emissions source.

Credit: (Photo courtesy of Dana Caulton)

The high-emitting wells made up less than 1 percent of the total number of wells in the area and were all found to be in the drilling stage, a preproduction stage not previously associated with significant emissions.

"These findings present a possible weakness in the current methods to inventory methane emissions and the top-down approach clearly represents an important complementary method that could be added to better define the impacts of shale gas development," said Paul Shepson, a professor of chemistry and earth atmospheric and planetary sciences at Purdue who co-led the study with Jed Sparks, a professor of ecology and evolutionary biology at Cornell. "This small fraction of the total number of wells was contributing a much larger large portion of the total emissions in the area, and the emissions for this stage were not represented in the current inventories."

The researchers flew above the Marcellus shale formation in southwestern Pennsylvania in the Purdue Airborne Laboratory for Atmospheric Research, a specially equipped airplane. The aircraft-based approach allowed researchers to identify plumes of methane gas from single well pads, groups of well pads and larger regional scales and to examine the production state of the wells.

"It is particularly noteworthy that large emissions were measured for wells in the drilling phase, in some cases 100 to 1,000 times greater than the inventory estimates," Shepson said. "This indicates that there are processes occurring - e.g. emissions from coal seams during the drilling process - that are not captured in the inventory development process. This is another example pointing to the idea that a large fraction of the total emissions is coming from a small fraction of shale gas production components that are in an anomalous condition."

The bottom-up inventories have been produced from industry measurements of emissions from individual production, transmission and distribution components and then scaling up to create an estimate of emissions for the region. However, with thousands of wells, and a complex processing and transmission system associated with each shale basin, obtaining a representative data set is difficult, he said.

A paper detailing the results will be published in the Proceedings of the National Academy of Sciences on Monday (April 14). The David R. Atkinson Center for a Sustainable Future at Cornell University funded this research.

"We need to develop a way to objectively measure emissions from shale gas development that includes the full range of operator types, equipment states and engineering approaches," Shepson said. "A whole-systems approach to measurement is needed to understand exactly what is occurring."

###

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Source: Paul Shepson, 765-494-7441, pshepson@purdue.edu

PHOTO CAPTION: A well pad in southwestern Pennsylvania. A Purdue and Cornell study found high levels of the greenhouse gas methane above shale gas wells during the drilling stage - a production point not thought to be a significant emissions source. (Photo courtesy of Dana Caulton)

A publication-quality photo is available at http://www.purdue.edu/uns/images/2014/shepson-wellpad.jpg

PHOTO CAPTION: Researchers used the Purdue Airborne Laboratory for Atmospheric Research, a specially equipped airplane, to measure plumes of methane gas above shale gas wells in southwestern Pennsylvania. (Photo courtesy of Paul Shepson)

A publication-quality photo is available at http://www.purdue.edu/uns/images/2014/shepson-plane.jpg

ABSTRACT

Toward a Better Understanding and Quantification of Methane Emissions from Shale Gas Development
Dana R. Caulton, Paul Shepson, Renee L. Santoro, Jed P. Sparks, Robert W. Howarth, Anthony R. Ingraffea, Maria O. L. Cambaliza, Colm Sweeney, Anna Karion, Kenneth J. Davis, Brian H. Stirm, Stephen A. Montzka, and Ben R. Miller

The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0-14g CH4 s-1 km-2, was quantified for a ~2,800-km2 area, which did not differ statistically form a bottom-up inventory, 2.3-4.6 g CH4 s-1 km-2. Large emissions averaging 34 g CH4s-1 per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ~1% of the total number of wells, account for 4-30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.

Elizabeth K. Gardner | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Marine vessel tracking system also a lifesaver for wildlife
12.02.2016 | Wildlife Conservation Society

nachricht Stability in ecosystems: Asynchrony of species is more important than diversity
12.02.2016 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>