Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prey-tell: Why Right Whales Linger in the Gulf of Maine

27.04.2011
As they might with most endangered animals, scientists consider the whereabouts and activities of right whales extremely important. “It is helpful to know where they go, why they go there and what they do when they’re there,” says Mark F. Baumgartner of the biology department at the Woods Hole Oceanographic Institution (WHOI).

Baumgartner and his colleagues studied the behavior of right whales and sei whales—both endangered species of baleen whales—in the waters of the Gulf of Maine to the east of Nantucket. They found that the location, the length of stay, and perhaps the very abundance of the whales may be dependent on an interesting vertical migration pattern by the copepods on which the whales feed. It seems to be a case, he said, of “how the behavior of the prey influences the behavior of the whales.”

The algae-eating copepod, Calanus finmarchicus, appears to migrate up and down in the water column to avoid being eaten by predators such as herring and sand lance. Since these fish need to see their prey in order to feed, copepods often remain at depths where sunlight will not penetrate during the daytime. Under cover of night, they leave this deep, dark refuge, swim to the surface, and feed on algae in relative safety.

In turn, this pattern, the scientists report in a recent issue of the journal Marine Ecology Progress Series, has a “dramatic impact” on the behavior and whereabouts of the whales. They found that right whales, which are capable of feeding at depths of 450 to 600 feet below the surface, continued to stay in the area and feed on copepods deep in the water column during the day. The sei whales, on the other hand, were “significantly less abundant” when the copepods displayed vertical migration. Unlike the right whales, the sei whales probably cannot feed at depth during the day, so they may leave the area in search of better feeding conditions elsewhere.

For reasons not well understood, the critically endangered right whale is vulnerable to being hit by ships while at the surface. Baumgartner points out that nighttime may prove particularly dangerous for right whales as they feed on copepods that have migrated to the surface, yet captains piloting ships in the dark have no way to see and avoid the whales.

“Our study also helps us understand why right whales stick around in this area, from about mid April to mid June,” Baumgartner said. Because of their ability to feed below the surface, “they are able to out-compete the herring” for food, he said.

It had been thought that the recovery of herring stocks in the last decade might further threaten the right whale by depleting its food supply, Baumgartner said. But these latest observations—along with a rise in the North Atlantic right whale population from roughly 300 to 400 since 1999—suggest that herring recovery does not threaten the right whale population, he said.

At the same time, the herring and sand lance, by inducing the copepods’ vertical migration behavior, “are likely influencing the distribution and abundance of sei whales” in that area, the researchers report. However, since the sei whale population numbers in the thousands, Baumgartner said their tendency to go elsewhere to look for food is not as great a concern as it would be for the right whale.

“The good news is that the recovery of herring stocks is not going to be a problem for the right whale population,” Baumgartner said. “The bad news is that if the right whales are feeding at the surface at night, they are at greater risk for ship strikes than we had thought earlier.”

The study was conducted during the spring seasons of 2005, 2006 and 2007.

Baumgartner was joined in the study by Nadine S.J. Lysiak of WHOI and researchers from UMass Boston and the NOAA Northeast Fisheries Science Center in Woods Hole.

Funding was provided by NOAA, the Office of Naval Research, the WHOI Ocean Life Institute, and the WHOI John E. and Anne W. Sawyer Endowed Fund.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=98429&ct=162

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>