Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prey-tell: Why Right Whales Linger in the Gulf of Maine

27.04.2011
As they might with most endangered animals, scientists consider the whereabouts and activities of right whales extremely important. “It is helpful to know where they go, why they go there and what they do when they’re there,” says Mark F. Baumgartner of the biology department at the Woods Hole Oceanographic Institution (WHOI).

Baumgartner and his colleagues studied the behavior of right whales and sei whales—both endangered species of baleen whales—in the waters of the Gulf of Maine to the east of Nantucket. They found that the location, the length of stay, and perhaps the very abundance of the whales may be dependent on an interesting vertical migration pattern by the copepods on which the whales feed. It seems to be a case, he said, of “how the behavior of the prey influences the behavior of the whales.”

The algae-eating copepod, Calanus finmarchicus, appears to migrate up and down in the water column to avoid being eaten by predators such as herring and sand lance. Since these fish need to see their prey in order to feed, copepods often remain at depths where sunlight will not penetrate during the daytime. Under cover of night, they leave this deep, dark refuge, swim to the surface, and feed on algae in relative safety.

In turn, this pattern, the scientists report in a recent issue of the journal Marine Ecology Progress Series, has a “dramatic impact” on the behavior and whereabouts of the whales. They found that right whales, which are capable of feeding at depths of 450 to 600 feet below the surface, continued to stay in the area and feed on copepods deep in the water column during the day. The sei whales, on the other hand, were “significantly less abundant” when the copepods displayed vertical migration. Unlike the right whales, the sei whales probably cannot feed at depth during the day, so they may leave the area in search of better feeding conditions elsewhere.

For reasons not well understood, the critically endangered right whale is vulnerable to being hit by ships while at the surface. Baumgartner points out that nighttime may prove particularly dangerous for right whales as they feed on copepods that have migrated to the surface, yet captains piloting ships in the dark have no way to see and avoid the whales.

“Our study also helps us understand why right whales stick around in this area, from about mid April to mid June,” Baumgartner said. Because of their ability to feed below the surface, “they are able to out-compete the herring” for food, he said.

It had been thought that the recovery of herring stocks in the last decade might further threaten the right whale by depleting its food supply, Baumgartner said. But these latest observations—along with a rise in the North Atlantic right whale population from roughly 300 to 400 since 1999—suggest that herring recovery does not threaten the right whale population, he said.

At the same time, the herring and sand lance, by inducing the copepods’ vertical migration behavior, “are likely influencing the distribution and abundance of sei whales” in that area, the researchers report. However, since the sei whale population numbers in the thousands, Baumgartner said their tendency to go elsewhere to look for food is not as great a concern as it would be for the right whale.

“The good news is that the recovery of herring stocks is not going to be a problem for the right whale population,” Baumgartner said. “The bad news is that if the right whales are feeding at the surface at night, they are at greater risk for ship strikes than we had thought earlier.”

The study was conducted during the spring seasons of 2005, 2006 and 2007.

Baumgartner was joined in the study by Nadine S.J. Lysiak of WHOI and researchers from UMass Boston and the NOAA Northeast Fisheries Science Center in Woods Hole.

Funding was provided by NOAA, the Office of Naval Research, the WHOI Ocean Life Institute, and the WHOI John E. and Anne W. Sawyer Endowed Fund.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=98429&ct=162

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>